iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-16072-1_41
How to Build an Optimal and Operational Knowledge Base to Predict Firefighters’ Interventions | SpringerLink
Skip to main content

How to Build an Optimal and Operational Knowledge Base to Predict Firefighters’ Interventions

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 542))

Included in the following conference series:

Abstract

It has recently been shown that pre-emergency transport, whether performed by firefighters or private ambulances, has a predictive character due to the fact that rescue is directly related to human activity, which is itself predictable. XGBoost has emerged as the best tool to predict the number of interventions by type, but how to design an optimal and operational knowledge base has not been discussed so far. We propose to explain how to make such a base with a content that is both relevant and can be continuously updated, making possible the industrialization of the process, and thus a better operational response of the concerned services. We show that three feature selection tools custom-built for XGBoost are mature enough to allow the optimization of such a database, and a good accuracy in predictions. We also show what these tools can bring in terms of business knowledge, and discuss the organizational and efficiency consequences that such an optimized predictive model could bring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ATMO-BFC, howpublished. https://www.atmo-bfc.org/accueil. Accessed 10 Jan 2022

  2. Google trends. https://trends.google.fr/trends/?geo=FR

  3. Hydroréel, howpublished. https://www.rdbrmc.com/hydroreel2/index.php. Accessed 10 Jan 2022

  4. Météo-France public data. https://donneespubliques.meteofrance.fr/?fond=produit &id_produit=90 &id_rubrique=32. Accessed 01 Feb 2021

  5. Réseau sentinelles. https://www.sentiweb.fr/france/fr/?. Accessed 10 Jan 2022

  6. Vigilance Météo-France public data. https://vigilance.meteofrance.fr/fr. Accessed 10 Jan 2022

  7. Xgbfir. https://github.com/limexp/xgbfir. Accessed 10 Jan 2022

  8. Akkaya-Kalayci, T., et al.: The effect of seasonal changes and climatic factors on suicide attempts of young people. BMC Psychiatry 17(1), 1–7 (2017)

    Article  Google Scholar 

  9. Arcolezi, H.H., et al.: Forecasting the number of firefighter interventions per region with local-differential-privacy-based data. Comput. Secur. 96, 101888 (2020)

    Article  Google Scholar 

  10. Bradstock, R.A., Cohn, J.S., Gill, A.M., Bedward, M., Lucas, C.: Prediction of the probability of large fires in the Sydney region of south-eastern Australia using components of fire weather (2017)

    Google Scholar 

  11. Carvalho, A.S., Captivo, M.E., Marques, I.: Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness. Eur. J. Oper. Res. 283(3), 1064–1080 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cerna, S., Guyeux, C., Arcolezi, H.H., Couturier, R., Royer, G.: A comparison of LSTM and XGBoost for predicting firemen interventions. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira, F. (eds.) WorldCIST 2020. AISC, vol. 1160, pp. 424–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45691-7_39

    Chapter  Google Scholar 

  13. Cerna, S., Guyeux, C., Royer, G., Chevallier, C., Plumerel, G.: Predicting fire brigades operational breakdowns: A real case study. Mathematics 8(8), 1383 (2020)

    Article  Google Scholar 

  14. Chen, A.Y., Lu, T.-Y., Ma, M.H.-M., Sun, W.-Z.: Demand forecast using data analytics for the preallocation of ambulances. IEEE J. Biomed. Health Inform. 20(4), 1178–1187 (2016)

    Article  Google Scholar 

  15. Chen, T., Guestrin, C.: Xgboost. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016

    Google Scholar 

  16. Couchot, J.-F., Guyeux, C., Royer, G.: Anonymously forecasting the number and nature of firefighting operations. In: Proceedings of the 23rd International Database Applications & Engineering Symposium, pp. 1–8 (2019)

    Google Scholar 

  17. de la Mota, I.F., Perez, E.S., Garduno, A.V.: Optimization and simulation of an ambulance location problem. In: 2017 Winter Simulation Conference (WSC). IEEE, December 2017

    Google Scholar 

  18. Durkheim, E.: Suicide: A Study in Sociology (ja spaulding & g. simpson, trans.). Free Press, Glencoe (1951). (Original work published 1897)

    Google Scholar 

  19. Fang, H., Lo, S.M., Zhang, Y., Shen, Y.: Development of a machine-learning approach for identifying the stages of fire development in residential room fires. Fire Saf. J. 126, 103469 (2021)

    Article  Google Scholar 

  20. Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005). https://doi.org/10.1007/BF02985802

    Article  Google Scholar 

  21. Guyeux, C., et al.: Firemen prediction by using neural networks: a real case study. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1037, pp. 541–552. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29516-5_42

    Chapter  Google Scholar 

  22. Lian, X., Melancon, S., Presta, J.-R., Reevesman, A., Spiering, B., Woodbridge, D.: Scalable real-time prediction and analysis of san Francisco fire department response times. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 694–699 (2019)

    Google Scholar 

  23. Lu, X.S., Zhou, M., Qi, L.: Analyzing temporal-spatial evolution of rare events by using social media data. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, October 2017

    Google Scholar 

  24. Lundberg, S.M., et al.: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

    Article  Google Scholar 

  25. Fernandes, P.A.M.: Fire spread prediction in shrub fuels in Portugal. Forest Ecol. Manag. 144(1), 67–74 (2001)

    Article  Google Scholar 

  26. Morello, T.F., Ramos, R.M., Anderson, L.O., Owen, N., Rosan, T.M., Steil, L.: Predicting fires for policy making: improving accuracy of fire brigade allocation in the Brazilian amazon. Ecol. Econ. 169, 106501 (2020)

    Article  Google Scholar 

  27. Nahuis, S.L.C., Guyeux, C., Arcolezi, H.H., Couturier, R., Royer, G., Lotufo, A.D.P.: Long short-term memory for predicting firemen interventions. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 1132–1137. IEEE (2019)

    Google Scholar 

  28. O’Connor, C.D., Calkin, D.E., Thompson, M.P.: An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int. J. Wildland Fire 26(7), 587–597 (2017)

    Article  Google Scholar 

  29. Pirklbauer, K., Findling, R.D.: Predicting the category of fire department operations. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications & Services. ACM, December 2019

    Google Scholar 

  30. Pirklbauer, K., Findling, R.D.: Predicting the category of fire department operations. In: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications Services, iiWAS2019, New York, NY, USA, pp. 659–663. Association for Computing Machinery (2019)

    Google Scholar 

  31. Rasel, R.I., Sultana, N., Azharul Islam, G.M., Islam, M., Meesad, P.: Spatio-temporal seismic data analysis for predicting earthquake: Bangladesh perspective. In: 2019 Research, Invention, and Innovation Congress (RI2C). IEEE, December 2019

    Google Scholar 

  32. Hari Sankar, S., Jayadev, K., Suraj, B., Aparna, P.: A comprehensive solution to road traffic accident detection and ambulance management. In: 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES). IEEE, November 2016

    Google Scholar 

  33. Van Houwelingen, C.A.J., Beersma, D.G.M.: Seasonal changes in 24-h patterns of suicide rates: a study on train suicides in the Netherlands. J. Affect. Disord. 66(2–3), 215–223 (2001)

    Article  Google Scholar 

  34. Yu, J., et al.: Seasonality of suicide: a multi-country multi-community observational study. Epidemiol. Psych.c Sci. 29, e163 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Guyeux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guyeux, C., Makhoul, A., Bahi, J.M. (2023). How to Build an Optimal and Operational Knowledge Base to Predict Firefighters’ Interventions. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_41

Download citation

Publish with us

Policies and ethics