iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-15934-3_34
Gaussian Mixture Model-Based Registration Network for Point Clouds with Partial Overlap | SpringerLink
Skip to main content

Gaussian Mixture Model-Based Registration Network for Point Clouds with Partial Overlap

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Mainstream methods of point cloud registration can be divided into two categories: strict point-level correspondence, which is commonly used but incompatible with real-world data; and statistical calculations, which compensate for the shortcomings of point-level methods but are inflexible, mainly when applied to scenes containing partial overlap. This paper proposes a novel registration network (poGMM-Net), the first statistical registration method to successfully align two partially overlapping point clouds. Specifically, our model modifies the registration problem to involve the minimization of Kullback-Leibler divergence in Gaussian mixture models (GMMs), focusing on overlapping regions. In poGMM-Net, the GMMs are associated with points in the point clouds by the learned potential correspondence matrix. The fitting of nonoverlapping points and outliers is avoided by fusing learned secondary feature sets. Application of models to ModelNet40 datasets demonstrated that poGMM-Net achieves state-of-the-art performance under various registration conditions, outperforming both point-level-based and statistical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anzai, Y.: Pattern Recognition and Machine Learning. Elsevier, Amsterdam (2012)

    Google Scholar 

  2. Aoki, Y., Goforth, H., Arun Srivatsan, R., Lucey, S.: PointNetLK: robust & efficient point cloud registration using PointNet. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  3. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vision 56(3), 221–255 (2004)

    Article  Google Scholar 

  4. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  5. Biber, P., Straßer, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2743–2748. IEEE (2003)

    Google Scholar 

  6. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Dhawale, A., Shankar, K.S., Michael, N.: Fast Monte-Carlo localization on aerial vehicles using approximate continuous belief representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5851–5859 (2018)

    Google Scholar 

  9. Eckart, B., Kim, K., Kautz, J.: HGMR: hierarchical gaussian mixtures for adaptive 3D registration. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 705–721 (2018)

    Google Scholar 

  10. Fu, K., Liu, S., Luo, X., Wang, M.: Robust point cloud registration framework based on deep graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8893–8902 (2021)

    Google Scholar 

  11. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_28

    Chapter  Google Scholar 

  12. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531. IEEE (2014)

    Google Scholar 

  13. Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: PointGMM: a neural GMM network for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12054–12063 (2020)

    Google Scholar 

  14. Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: registration of 3D point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4267–4276 (2021)

    Google Scholar 

  15. Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2010)

    Article  Google Scholar 

  16. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1), 1–104 (2015)

    Article  Google Scholar 

  17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  18. Reynolds, D.A.: Gaussian mixture models. Encyclopedia Biometrics 741, 659–663 (2009)

    Article  Google Scholar 

  19. Rusinkiewicz, S.: A symmetric objective function for ICP. ACM Trans. Graph. (TOG) 38(4), 1–7 (2019)

    Article  Google Scholar 

  20. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, , Seattle, WA, vol. 2, p. 435 (2009)

    Google Scholar 

  21. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  22. Wang, Y., Solomon, J.M.: PRNet: self-supervised learning for partial-to-partial registration. arXiv preprint arXiv:1910.12240 (2019)

  23. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  24. Yew, Z.J., Lee, G.H.: RPM-Net: robust point matching using learned features. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  25. Yuan, W., Eckart, B., Kim, K., Jampani, V., Fox, D., Kautz, J.: DeepGMR: learning latent Gaussian mixture models for registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 733–750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_43

    Chapter  Google Scholar 

  26. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Own .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Sun, J., Own, CM., Tao, W. (2022). Gaussian Mixture Model-Based Registration Network for Point Clouds with Partial Overlap. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15934-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15933-6

  • Online ISBN: 978-3-031-15934-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics