Abstract
Mainstream methods of point cloud registration can be divided into two categories: strict point-level correspondence, which is commonly used but incompatible with real-world data; and statistical calculations, which compensate for the shortcomings of point-level methods but are inflexible, mainly when applied to scenes containing partial overlap. This paper proposes a novel registration network (poGMM-Net), the first statistical registration method to successfully align two partially overlapping point clouds. Specifically, our model modifies the registration problem to involve the minimization of Kullback-Leibler divergence in Gaussian mixture models (GMMs), focusing on overlapping regions. In poGMM-Net, the GMMs are associated with points in the point clouds by the learned potential correspondence matrix. The fitting of nonoverlapping points and outliers is avoided by fusing learned secondary feature sets. Application of models to ModelNet40 datasets demonstrated that poGMM-Net achieves state-of-the-art performance under various registration conditions, outperforming both point-level-based and statistical methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anzai, Y.: Pattern Recognition and Machine Learning. Elsevier, Amsterdam (2012)
Aoki, Y., Goforth, H., Arun Srivatsan, R., Lucey, S.: PointNetLK: robust & efficient point cloud registration using PointNet. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vision 56(3), 221–255 (2004)
Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)
Biber, P., Straßer, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2743–2748. IEEE (2003)
Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)
Dhawale, A., Shankar, K.S., Michael, N.: Fast Monte-Carlo localization on aerial vehicles using approximate continuous belief representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5851–5859 (2018)
Eckart, B., Kim, K., Kautz, J.: HGMR: hierarchical gaussian mixtures for adaptive 3D registration. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 705–721 (2018)
Fu, K., Liu, S., Luo, X., Wang, M.: Robust point cloud registration framework based on deep graph matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8893–8902 (2021)
Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_28
Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531. IEEE (2014)
Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: PointGMM: a neural GMM network for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12054–12063 (2020)
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: registration of 3D point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4267–4276 (2021)
Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2010)
Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1), 1–104 (2015)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Reynolds, D.A.: Gaussian mixture models. Encyclopedia Biometrics 741, 659–663 (2009)
Rusinkiewicz, S.: A symmetric objective function for ICP. ACM Trans. Graph. (TOG) 38(4), 1–7 (2019)
Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, , Seattle, WA, vol. 2, p. 435 (2009)
Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Wang, Y., Solomon, J.M.: PRNet: self-supervised learning for partial-to-partial registration. arXiv preprint arXiv:1910.12240 (2019)
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
Yew, Z.J., Lee, G.H.: RPM-Net: robust point matching using learned features. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Yuan, W., Eckart, B., Kim, K., Jampani, V., Fox, D., Kautz, J.: DeepGMR: learning latent Gaussian mixture models for registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 733–750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_43
Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Sun, J., Own, CM., Tao, W. (2022). Gaussian Mixture Model-Based Registration Network for Point Clouds with Partial Overlap. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-15934-3_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15933-6
Online ISBN: 978-3-031-15934-3
eBook Packages: Computer ScienceComputer Science (R0)