iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-15226-9_44
Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers | SpringerLink
Skip to main content

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

  • 1853 Accesses

Abstract

Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/GSNCodes/ArUCo-Markers-Pose-Estimation-Generation-Python.

References

  1. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298 (2012)

    Google Scholar 

  2. Vartholomeos, P., Papadopoulos, E.: Analysis, design and control of a planar micro-robot driven by two centripetal-force actuators. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 649–654 (2006)

    Google Scholar 

  3. Karydis, K., Liu, Y., Poulakakis, I., Tanner, H.G.: A template candidate for miniature legged robots in quasi-static motion. Auton. Robot. 38(2), 193–209 (2014). https://doi.org/10.1007/s10514-014-9401-4

    Article  Google Scholar 

  4. Transeth, A.A., Pettersen, K.Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27(7), 999–1015 (2009)

    Article  Google Scholar 

  5. Zhan, X., Xu, J., Fang, H.: A vibration-driven planar locomotion robot–Shell. Robotica 36, 1–19 (2018). https://doi.org/10.1017/S0263574718000383

    Article  Google Scholar 

  6. Liljebäck, P., Pettersen, K.Y., Stavdahl, O., Gravdahl, J.T.: Snake Robots: Modelling, Mechatronics, and Control. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2996-7

    Book  MATH  Google Scholar 

  7. Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 026007 (2011)

    Google Scholar 

  8. Yao, J.J., Gao, S., Jiang, G.L., Hill, T.L., Yu, H., Shao, D.: Screw theory based motion analysis for an inchworm-like climbing robot. Robotica 33(8), 1704–1717 (2015)

    Article  Google Scholar 

  9. Bolotnik, N.N., Zeidis, I.M., Zimmermann, K., Yatsun, S.F.: Dynamics of controlled motion of vibration-driven systems. J. Comput. Syst. Sci. Int. 45(5), 831–840 (2006)

    Article  Google Scholar 

  10. Chernousko, F.L.: Analysis and optimization of the motion of a body controlled by means of a movable internal mass. PMM - J. Appl. Math. Mech. 72(6), 819–842 (2006)

    Article  Google Scholar 

  11. Hatazaki, K., Konyo, M., et al.: Active scope camera for urban search and rescue. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 2596–2602 (2007)

    Google Scholar 

  12. Becker, F., Minchenya, V.T., Zeidis, I., Zimmermann, K.: Modeling and dynamical simulation of vibration-driven robots. In: 56th International Scientific Colloquium Ilmenau University of Technology (2011)

    Google Scholar 

  13. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating Kilobots within ARGoS: models and experimental validation. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_14

    Chapter  Google Scholar 

  14. Li, B., Wu, J., Tan, X., Wang, B.: ArUco marker detection under occlusion using convolutional neural network. In: 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 706–711 (2020). https://doi.org/10.1109/CACRE50138.2020.9230250

  15. Poroykov, A., Kalugin, P., Shitov, S., Lapitskaya, I.: Modeling ArUco markers images for accuracy analysis of their 3D pose estimation. In: Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020), Part 2, short14-1 (2020). https://doi.org/10.51130/graphicon-2020-2-4-14

  16. Oščádal, P., et al.: Improved pose estimation of ArUco tags using a novel 3D placement strategy. Sensors (Basel, Switzerland) 20(17), 4825 (2020). https://doi.org/10.3390/s20174825

Download references

Acknowledgements

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020 and also by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Matos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matos, D. et al. (2023). Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_44

Download citation

Publish with us

Policies and ethics