iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-13870-6_43
Joint Semantic Segmentation and Object Detection Based on Relational Mask R-CNN | SpringerLink
Skip to main content

Joint Semantic Segmentation and Object Detection Based on Relational Mask R-CNN

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13393))

Included in the following conference series:

Abstract

As fundamental and important problems in computer vision field, semantic segmentation and object detection have made a series of breakthroughs in recent years. Although the existing semantic segmentation and object detection methods have achieved impressive performance in some detection benchmarks, they only focus on local information near the region of objects. However, an image usually contains rich semantic information, including scene context information and dependency information between objects. As a result, ignoring this semantic information will inevitably deteriorate their performance. In this paper, we propose a novel network named joint semantic segmentation and object detection based on relational Mask R-CNN (RM-RCNN) to solve above limitations. By designing the object dependence calculation module (DCM), we can model the relationship information between objects by their geometric and appearance features, so as to improve the accuracy of semantic segmentation and object detection. At the same time, we also design a cross-scale information transmission module (CSITM), which can make the features of different levels transmit information to each other. By using CSITM, our method can effectively retain the useful information and discard the useless information to further improve its performance. Experiments on two benchmark datasets demonstrate the effectiveness of our proposed network.

Supported by Fund of the Jilin Provincial Science and Technology Department (20210101187JC), and the Fundamental Research Funds for the Central Universities (2412020FZ029).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. In: Adaptive Computation and Machine Learning. MIT Press (2016), http://www.deeplearningbook.org

  2. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  3. Badrinarayanan, V., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., et al.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)

  5. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. Adv. Neural Inf. Proces. Syst. 24, 1–9 (2011)

    Google Scholar 

  6. He, K., Gkioxari, G., et al.: Mask R-CNN. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2017)

    Google Scholar 

  7. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  8. Yu, S., et al.: Democracy Does Matter: Comprehensive Feature Mining for Co-Salient Object Detection. arXiv preprint arXiv:2203.05787 (2022)

  9. Chen, Q., et al.: You only look one-level feature. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)

    Google Scholar 

  10. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  11. Wang, J., et al.: End-to-end object detection with fully convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15849–15858 (2021)

    Google Scholar 

  12. Li, W., et al.: SIGMA: Semantic-complete Graph Matching for Domain Adaptive Object Detection. arXiv preprint arXiv:2203.06398 (2022)

  13. Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: IEEE International Conference on Computer Vision, vol. 2, p. 273. IEEE Computer Society (2003)

    Google Scholar 

  14. Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Zeng, X., Ouyang, W., Yang, B., Yan, J., Wang, X.: Gated bi-directional CNN for object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS, vol. 9911, pp. 354–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_22

    Chapter  Google Scholar 

  16. Shrivastava, A., Gupta, A.: Contextual priming and feedback for faster R-CNN. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS, vol. 9905, pp. 330–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_20

    Chapter  Google Scholar 

  17. Chen, X., Gupta, A.: Spatial memory for context reasoning in object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  18. Yong, L., Wang, R., Shan, S., Chen, X.: Structure inference net: Object detection using scene-level context and instance-level relationships. In: IEEE (2018)

    Google Scholar 

  19. Zhang, Y., Kong, J., Qi, M., Liu, Y., Lu, Y.: Object detection based on multiple information fusion net. Appl. Sci. 10(1), 418 (2020)

    Article  Google Scholar 

  20. Zhao, H., et al.: Pyramid scene parsing network. In: IEEE Computer Society (2016)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Pinheiro, P., Collobert, R., Dollar, P.: Learning to segments objects candidates. Adv. Neural Inf. Proces. Syst. 28, 1–9 (2015)

    Google Scholar 

  23. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  24. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  25. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 1–9 (2015)

    Google Scholar 

  27. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  28. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  29. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  30. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  31. Hochreiter, S., et al.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Lin, T.-Y., et al.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  33. Everingham, M., et al.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  34. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. IEEE (2016)

    Google Scholar 

  35. Li, Y., et al.: Fully convolutional instance-aware semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2359–2367 (2017)

    Google Scholar 

  36. Bolya, D., et al.: Real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Xu, H., Fan, J., Qi, M., Liu, T., Wang, J. (2022). Joint Semantic Segmentation and Object Detection Based on Relational Mask R-CNN. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13393. Springer, Cham. https://doi.org/10.1007/978-3-031-13870-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13870-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13869-0

  • Online ISBN: 978-3-031-13870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics