iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-13832-4_5
Robust Virtual Sensors Design for Linear Systems | SpringerLink
Skip to main content

Robust Virtual Sensors Design for Linear Systems

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Abstract

The problem of virtual sensors design to solve the problems of control and fault diagnosis in nonlinear systems is studied. The problem is solved in three steps: at the first step, the linear model invariant with respect to the disturbance is designed; at the second step, a possibility to estimate the given variable is checked; finally, stability of the observer is obtained. The relations to design virtual sensor of minimal dimension estimating given component of the state vector of the system are obtained. The theoretical results are illustrated by practical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, Q., Bhatti, A., Iqbal, M.: Virtual sensors for automotive engine sensors fault diagnosis in second-order sliding modes. IEEE Sens. J. 11(9), 1832–1840 (2011)

    Article  Google Scholar 

  2. Albertos, P., Goodwin, G.: Virtual servers for control application. Annu. Rev. Control. 26, 101–112 (2002)

    Article  Google Scholar 

  3. Berkhoff, A., Hekman, T.: Active noise control using finite element-based virtual sensors. In: Proceedings IEEE International Conference Acoustics, Speech and Signal Processing, Brighton, UK (2019)

    Google Scholar 

  4. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35653-0

    Book  MATH  Google Scholar 

  5. Galavizh, A., Hassanabadi, A.: Designing fuzzy fault tolerant controller for a DC microgrid based on virtual sensor. In: Proceedings 7th International Conference Control, Instrumentation and Automation, Tabriz, Iran (2021)

    Google Scholar 

  6. Hashlamon, I., Erbatur, K.: Joint sensor fault detection and recovery based on virtual sensor for walking legged robots. In: Proceedings IEEE 23rd International Symposium Industrial Electronics, Istanbul, Turkey, pp. 1210–1204 (2014)

    Google Scholar 

  7. Heredia, G., Ollero, A.: Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft. Sensors 10, 2188–2201 (2010)

    Article  Google Scholar 

  8. Hosseinpoor, Z., Arefi, M., Razavi-Far, R., Mozafari, N., Hazbavi, S.: Virtual sensors for fault diagnosis: a case of induction motor broken rotor bar. IEEE Sens. J. 21(4), 5044–5051 (2021)

    Article  Google Scholar 

  9. Jove, E., Casteleiro-Roca, J., Quntian, H., Mendez-Perez, J., Calvo-Rolle, J.: Virtual sensor for fault detection, isolation and data recovery for bicomponent mixing machine monitoring. Informatica 30(4), 671–687 (2019)

    Article  Google Scholar 

  10. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, Hoboken (1972)

    MATH  Google Scholar 

  11. Low, X., Willsky, A., Verghese, G.: Optimally robust redundancy relations for failure detection in uncertain systems. Automatica 22, 333–344 (1996)

    MATH  Google Scholar 

  12. Luzar, M., Witczak, M.: Fault-tolerant control and diagnosis for LPV system with H-infinity virtual sensor. In: Proceedings 3rd Conference Control and Fault-Tolerant Systems, Barcelona, Spain, pp. 825–830 (2016)

    Google Scholar 

  13. Roy, C., Roy, A., Misra, S.: DIVISOR: dynamic virtual sensor formation for overlapping region in IoT-based sensor-cloud. In: Proceedings 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain (2018)

    Google Scholar 

  14. Trevathan, J., Read, W., Sattar, A., Schmidtke, S., Sharp, T.: The virtual sensor concept. In: Proceedings 2020 IEEE SENSORS, Rotterdam, Netherlands (2020)

    Google Scholar 

  15. Wang, Y., Rotondo, D., Puig, V., Cembrano, G.: Fault-tolerant control based on virtual actuator and sensor for discrete-time descriptor systems. IEEE Trans. Circuits Syst. 67(12), 5316–5325 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Witczak, M.: Fault Diagnosis and Fault Tolerant Control Strategies for Nonlinear Systems. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03014-2

    Book  MATH  Google Scholar 

  17. Zhirabok, A., Shumsky, A., Solyanik, S., Suvorov, A.: Fault detection in nonlinear systems via linear methods. Int. J. Appl. Math. Comput. Sci. 27, 261–272 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhirabok, A., Zuev, A., Shumsky, A.: Sensor fault identification in mechatronic systems described by linear and nonlinear models. In: Proceedings 29th IEEE International Symposium on Industrial Electronics, Delft, The Netherlands, pp. 1071–1076 (2020)

    Google Scholar 

  19. Zhirabok, A., Zuev, A., Shumsky, A.: Sensor fault identification in nonlinear dynamic systems. IFAC Papers On Line 53–2, 750–755 (2020)

    Article  Google Scholar 

  20. Zhirabok, A., Ir, K.C.: Virtual sensors for the functional diagnosis of nonlinear systems. J. Comput. Syst. Sci. Int. 61, 67–75 (2022). https://doi.org/10.1134/S1064230722010130

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This paper was supported by Russian Scientific Foundation, project 22-29-01303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zuev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhirabok, A., Zuev, A., Filaretov, V., Yuan, C., Protcenko, A., Il, K.C. (2022). Robust Virtual Sensors Design for Linear Systems. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics