iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-13643-6_12
Analysing Moral Beliefs for Detecting Hate Speech Spreaders on Twitter | SpringerLink
Skip to main content

Analysing Moral Beliefs for Detecting Hate Speech Spreaders on Twitter

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2022)

Abstract

The Hate and Morality (HaMor) submission for the Profiling Hate Speech Spreaders on Twitter task at PAN 2021 ranked as the 19th position - over 67 participating teams - according to the averaged accuracy value of \(73\%\) over the two languages - English (\(62\%\)) and Spanish (\(84\%\)). The method proposed four types of features for inferring users attitudes just from the text in their messages: HS detection, users morality, named entities, and communicative behaviour. In this paper, since the test set is now available, we were able to analyse false negative and false positive prediction with the aim of shed more light on the hate speech spreading phenomena. Furthermore, we fine-tuned the features based on users morality and named entities showing that semantic resources could help in facing Hate Speech Spreaders detection on Twitter.

M. Lai and M. A. Stranisci—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.noswearing.com/.

  2. 2.

    http://www.rsdb.org/full.

  3. 3.

    https://spacy.io/.

  4. 4.

    https://www.mediawiki.org/wiki/API:Opensearch.

  5. 5.

    Lush 2 is a Sex Toys.

  6. 6.

    Femiorca is a feminist community.

  7. 7.

    https://github.com/mirkolai/PAN2021_HaMor.

References

  1. Basile, V., et al.: SemEval-2019 Task 5: multilingual detection of hate speech against immigrants and women in twitter. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 54–63. Association for Computational Linguistics (2019)

    Google Scholar 

  2. Bassignana, E., Basile, V., Patti, V.: Hurtlex: a multilingual lexicon of words to hurt. In: 5th Italian Conference on Computational Linguistics, CLiC-it 2018, vol. 2253, pp. 1–6. CEUR-WS (2018)

    Google Scholar 

  3. Cignarella, A.T., Lai, M., Bosco, C., Patti, V., Rosso, P.: Sardistance@evalita2020: overview of the task on stance detection in Italian tweets. In: Proceedings of the 7th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian (EVALITA 2020), CEUR Workshop Proceedings, vol. 2765. CEUR-WS.org, Aachen (2020)

    Google Scholar 

  4. Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.): Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, 21–24 September 2021, CEUR Workshop Proceedings, vol. 2936. CEUR-WS.org (2021)

    Google Scholar 

  5. Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96(5), 1029 (2009)

    Article  Google Scholar 

  6. Haidt, J., Joseph, C., et al.: The moral mind: how five sets of innate intuitions guide the development of many culture-specific virtues, and perhaps even modules. Innate Mind 3, 367–391 (2007)

    Google Scholar 

  7. Hoover, J., et al.: Moral foundations twitter corpus: a collection of 35k tweets annotated for moral sentiment. Social Psychol. Pers. Sci. 11(8), 1057–1071 (2020)

    Article  Google Scholar 

  8. Hoover, J., et al.: Bound in hatred: the role of group-based morality in acts of hate. PsyArXiv (2019)

    Google Scholar 

  9. Hopp, F.R., Fisher, J.T., Cornell, D., Huskey, R., Weber, R.: The extended Moral Foundations Dictionary (eMFD): development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behav. Res. Methods 53(1), 232–246 (2021)

    Article  Google Scholar 

  10. Indurthi, V., Syed, B., Shrivastava, M., Chakravartula, N., Gupta, M., Varma, V.: FERMI at SemEval-2019 task 5: using sentence embeddings to identify hate speech against immigrants and women in Twitter. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 70–74. Association for Computational Linguistics (2019)

    Google Scholar 

  11. Kwak, H., An, J., Jing, E., Ahn, Y.Y.: Frameaxis: characterizing microframe bias and intensity with word embedding. PeerJ Comput. Sci. 7, e644 (2021)

    Article  Google Scholar 

  12. Labadie, R., Castro-Castro, D., Ortega Bueno, R.: Deep modeling of latent representations for twitter profiles on hate speech spreaders identification: notebook for PAN at CLEF 2021. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, 21–24 September 2021, CEUR Workshop Proceedings, vol. 2936, pp. 2035–2046. CEUR-WS.org (2021)

    Google Scholar 

  13. Mishra, P., Del Tredici, M., Yannakoudakis, H., Shutova, E.: Author profiling for abuse detection. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1088–1098 (2018)

    Google Scholar 

  14. Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)

    Article  MathSciNet  Google Scholar 

  15. Pamungkas, E.W., Cignarella, A.T., Basile, V., Patti, V., et al.: 14-ExLab@ UniTo for AMI at IberEval2018: exploiting lexical knowledge for detecting misogyny in English and Spanish tweets. In: 3rd Workshop on Evaluation of Human Language Technologies for Iberian Languages, IberEval 2018, vol. 2150, pp. 234–241. CEUR-WS (2018)

    Google Scholar 

  16. Pérez, J.M., Luque, F.M.: Atalaya at SemEval 2019 task 5: robust embeddings for tweet classification. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 64–69. Association for Computational Linguistics (2019)

    Google Scholar 

  17. Rangel, F., De la Peña Sarracén, G.L., Chulvi, B., Fersini, E., Rosso, P.: Profiling hate speech spreaders on twitter task at PAN 2021. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, 21–24 September 2021, CEUR Workshop Proceedings, vol. 2936, pp. 1772–1789. CEUR-WS.org (2021)

    Google Scholar 

  18. Schwartz, S.H.: An overview of the schwartz theory of basic values. Online Read. Psychol. Cult. 2(1), 2307–0919 (2012)

    Google Scholar 

  19. Shweder, R.A., Much, N.C., Mahapatra, M., Park, L.: The “big three” of morality (autonomy, community, divinity) and the “big three” explanations of suffering. Morality Health, 119–169 (1997)

    Google Scholar 

  20. Siino, M., Di Nuovo, E., Tinnirello, I., La Cascia, M.: Detection of hate speech spreaders using convolutional neural networks. In: Faggioli, G., Ferro, N., Joly, A., Maistro, M., Piroi, F. (eds.) Proceedings of the Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest, Romania, 21–24 September 2021, CEUR Workshop Proceedings, vol. 2936, pp. 2126–2136. CEUR-WS.org (2021)

    Google Scholar 

  21. Stranisci, M., De Leonardis, M., Bosco, C., Viviana, P.: The expression of moral values in the twitter debate: a corpus of conversations. IJCoL - Special Issue: Comput. Dial. Model. Role Pragmatics Common Ground Interact. 7(1,2), 113–132 (2021)

    Google Scholar 

  22. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? predictive features for hate speech detection on Twitter. In: Proceedings of the NAACL Student Research Workshop. Association for Computational Linguistics (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, M., Stranisci, M.A., Bosco, C., Damiano, R., Patti, V. (2022). Analysing Moral Beliefs for Detecting Hate Speech Spreaders on Twitter. In: Barrón-Cedeño, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2022. Lecture Notes in Computer Science, vol 13390. Springer, Cham. https://doi.org/10.1007/978-3-031-13643-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13643-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13642-9

  • Online ISBN: 978-3-031-13643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics