iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-13321-3_10
Spectral Analysis of Masked Signals in the Context of Image Inpainting | SpringerLink
Skip to main content

Spectral Analysis of Masked Signals in the Context of Image Inpainting

  • Conference paper
  • First Online:
Image Analysis and Processing. ICIAP 2022 Workshops (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13373))

Included in the following conference series:

  • 1057 Accesses

Abstract

This paper proposes a computationally efficient algorithm for evaluating a sum of squared differences in the image domain in the presence of arbitrary mask configurations. Among the many potential applications of this algorithm, we consider for illustration an image inpainting task. The results show that on a diverse sample of hundreds of simulated holes in the tested images, the proposed technique is more effective than the baseline normalized cross-correlation, even when the masks are properly dealt with by the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bugeau, A., Bertalmío, M., Caselles, V., Sapiro, G.: A comprehensive framework for image inpainting. IEEE Trans. Image Process. 19(10), 2634–2645 (2010)

    Article  MathSciNet  Google Scholar 

  2. Chan, C.h., Pang, G.K.: Fabric defect detection by fourier analysis. IEEE Trans. Ind. Appl. 36(5), 1267–1276 (2000)

    Google Scholar 

  3. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  4. Dondi, P., Lombardi, L., Setti, A.: Dafne: a dataset of fresco fragments for digital anastlylosis. Pattern Recogn. Lett. 138, 631–637 (2020)

    Article  Google Scholar 

  5. Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (mca). Appl. Comput. Harmon. Anal. 19(3), 340–358 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fadili, M.J., Starck, J.L., Murtagh, F.: Inpainting and zooming using sparse representations. Comput. J. 52(1), 64–79 (2009)

    Article  Google Scholar 

  7. Hasegawa, M., Kako, T., Hirobayashi, S., Misawa, T., Yoshizawa, T., Inazumi, Y.: Image inpainting on the basis of spectral structure from 2-d nonharmonic analysis. IEEE Trans. Image Process. 22(8), 3008–3017 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kaneko, S., Satoh, Y., Igarashi, S.: Using selective correlation coefficient for robust image registration. Pattern Recogn. 36(5), 1165–1173 (2003)

    Article  Google Scholar 

  9. Kliangsuwan, T., Heednacram, A.: Fft features and hierarchical classification algorithms for cloud images. Eng. Appl. Artif. Intell. 76, 40–54 (2018)

    Article  Google Scholar 

  10. Konstantinidis, D., Stathaki, T., Argyriou, V.: Phase amplified correlation for improved sub-pixel motion estimation. IEEE Trans. Image Process. 28(6), 3089–3101 (2019)

    Article  MathSciNet  Google Scholar 

  11. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11(2), 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  12. Mousavi, P., Tavakoli, A.: A new algorithm for image inpainting in fourier transform domain. Comput. Appl. Math. 38(1), 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  13. Orchard, J.: Efficient least squares multimodal registration with a globally exhaustive alignment search. IEEE Trans. Image Process. 16(10), 2526–2534 (2007)

    Article  MathSciNet  Google Scholar 

  14. Padfield, D.: Masked object registration in the fourier domain. IEEE Trans. Image Process. 21(5), 2706–2718 (2011)

    Article  MathSciNet  Google Scholar 

  15. Pan, W., Qin, K., Chen, Y.: An adaptable-multilayer fractional fourier transform approach for image registration. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 400–414 (2008)

    Article  Google Scholar 

  16. Reddy, B.S., Chatterji, B.N.: An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  17. Sheng, Y., Arsenault, H.H.: Experiments on pattern recognition using invariant fourier-mellin descriptors. JOSA A 3(6), 771–776 (1986)

    Article  Google Scholar 

  18. Sridevi, G., Srinivas Kumar, S.: Image inpainting based on fractional-order nonlinear diffusion for image reconstruction. Circuits Systems Signal Process. 38(8), 3802–3817 (2019)

    Article  Google Scholar 

  19. Thai, D.H., Gottschlich, C.: Simultaneous inpainting and denoising by directional global three-part decomposition: connecting variational and fourier domain-based image processing. Royal Society Open Science 5(7), 171176 (2018)

    Article  Google Scholar 

  20. Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998)

    Article  Google Scholar 

  21. Tsai, D.M., Wu, S.C., Li, W.C.: Defect detection of solar cells in electroluminescence images using fourier image reconstruction. Sol. Energy Mater. Sol. Cells 99, 250–262 (2012)

    Article  Google Scholar 

  22. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with pdes: A common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)

    Article  Google Scholar 

  23. Wang, H., Jiang, L., Liang, R., Li, X.X.: Exemplar-based image inpainting using structure consistent patch matching. Neurocomputing 269, 90–96 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Aldea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Hégarat-Mascle, S., Aldea, E. (2022). Spectral Analysis of Masked Signals in the Context of Image Inpainting. In: Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C. (eds) Image Analysis and Processing. ICIAP 2022 Workshops. ICIAP 2022. Lecture Notes in Computer Science, vol 13373. Springer, Cham. https://doi.org/10.1007/978-3-031-13321-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13321-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13320-6

  • Online ISBN: 978-3-031-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics