Abstract
We consider graphs to model uncertain facts as edges, linking involved entities, with weights reflecting uncertainty degree. Rules are used to create new edges from the existing ones, and methods to propagate uncertainty measures are defined using a suitable theoretical framework. We also consider new rules, mined from graphs containing uncertain information and answer sets obtained using such rules. We then use Argument Graphs and Possibility Networks to evaluate the conclusions that can be drawn from the facts, taking into account their uncertainty. Finally, information revision is discussed for cases when a new piece of information is added to the graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We received the data from the investigators to produce research and proof of concepts, with permission of publishing general research results, but not to share the data. All the files we received were carefully anonymized, discarding all unnecessary information (e.g. addresses) and changing names to numerical ids, phone numbers to random digits and so on. In this way no real persons, events or places could be recognized.
References
Acclavio, M., Horne, R., Strassburger, L.: Logic beyond formulas: a proof system on graphs. In: LICS 2020–35th ACM/IEEE Symposium on Logic in Computer Science, Saarbrucken, July 2020 (2020). ff10.1145/3373718.3394763ff. ffhal-02560105
Azzini, A., et al.: Advances in data management in the big data era. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds.) Advancing Research in Information and Communication Technology. IAICT, vol. 600, pp. 99–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81701-5_4
Bastian, M., Heymann, S., Jacomy, M.: In International AAAI Conference on Web and Social Media (2009). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
Bellandi, V., Ceravolo, P., Maghool, S., Pindaro, M., Siccadi, S.: Correlation and pattern detection in event networks. In: 2021 BigGraphs Workshop at IEEE BigData 2021 (2021)
Benferhat, S., Didier, D., Prade, H., Williams, M.-A.: A practical approach to revising prioritized knowledge bases. Studia Logica 70 (2002)
Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reason. 44, 224–243 (2007)
Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: In AAAI, pp. 1467–1474. AAAI Press (2015)
Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argument Comput. 5(1), 5–30 (2014)
Calk, C., Das, A., Waring, T.: Beyond formulas-as-cographs: an extension of Boolean logic to arbitrary graphs (2020). arXiv:2004.12941
Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001). https://doi.org/10.1023/A:1016740830286
Dubois, D., Prade, H.: Belief revision with uncertain inputs in the possibilistic setting (2013). arXiv:1302.3575
Dubois, D., Prade, H.: Possibilistic logic - an overview. In: Gabbay, D.M., Siekmann, J.H., Woods, J. (eds.) Computational Logic, Volume 9 of the Handbook of The History of Logic (2014)
Dubois, D., Liub, W., Mac, J., Prade, H.: The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Inf. Fusion 32, 12–39 (2016)
Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Reasoning Web, vol. 5689, pp. 40–110 (2009)
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. TPLP 19(1), 27–82 (2019)
Guil, F., Gomez, I., Juarez, J.M., Marin, R.: Propos: a dynamic web tool for managing possibilistic and probabilistic temporal constraint networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007, Part II. LNCS, vol. 4528, pp. 551–560. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73055-2_57
Hunter, A., Polberg, S., Thimm, M.: Epistemic graphs for representing and reasoning with positive and negative influences of arguments. Artif. Intell. 281 (2020). https://doi.org/10.1016/j.artint.2020.103236
Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_3
Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2_23
Tran, H.D., Stepanova, D., Gad-Elrab, M.H., Lisi, F.A., Weikum, G.: Towards nonmonotonic relational learning from knowledge graphs. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS (LNAI), vol. 10326, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_8
Stepanova, D., Gad-Elrab, M.H., Ho, V.T.: Rule induction and reasoning over knowledge graphs. In: d’Amato, C., Theobald, M. (eds.) Reasoning Web 2018. LNCS, vol. 11078, pp. 142–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00338-8_6
Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5
Wang, Z., Li, J.: DF2Rules: learning rules from RDF knowledge bases by mining frequent predicate cycles. preprint arXiv:1512.07734 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bellandi, V., Frati, F., Siccardi, S., Zuccotti, F. (2022). Management of Uncertain Data in Event Graphs. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1601. Springer, Cham. https://doi.org/10.1007/978-3-031-08971-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-031-08971-8_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08970-1
Online ISBN: 978-3-031-08971-8
eBook Packages: Computer ScienceComputer Science (R0)