iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-08971-8_47
Management of Uncertain Data in Event Graphs | SpringerLink
Skip to main content

Management of Uncertain Data in Event Graphs

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

We consider graphs to model uncertain facts as edges, linking involved entities, with weights reflecting uncertainty degree. Rules are used to create new edges from the existing ones, and methods to propagate uncertainty measures are defined using a suitable theoretical framework. We also consider new rules, mined from graphs containing uncertain information and answer sets obtained using such rules. We then use Argument Graphs and Possibility Networks to evaluate the conclusions that can be drawn from the facts, taking into account their uncertainty. Finally, information revision is discussed for cases when a new piece of information is added to the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We received the data from the investigators to produce research and proof of concepts, with permission of publishing general research results, but not to share the data. All the files we received were carefully anonymized, discarding all unnecessary information (e.g. addresses) and changing names to numerical ids, phone numbers to random digits and so on. In this way no real persons, events or places could be recognized.

References

  1. Acclavio, M., Horne, R., Strassburger, L.: Logic beyond formulas: a proof system on graphs. In: LICS 2020–35th ACM/IEEE Symposium on Logic in Computer Science, Saarbrucken, July 2020 (2020). ff10.1145/3373718.3394763ff. ffhal-02560105

    Google Scholar 

  2. Azzini, A., et al.: Advances in data management in the big data era. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds.) Advancing Research in Information and Communication Technology. IAICT, vol. 600, pp. 99–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81701-5_4

    Chapter  Google Scholar 

  3. Bastian, M., Heymann, S., Jacomy, M.: In International AAAI Conference on Web and Social Media (2009). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  4. Bellandi, V., Ceravolo, P., Maghool, S., Pindaro, M., Siccadi, S.: Correlation and pattern detection in event networks. In: 2021 BigGraphs Workshop at IEEE BigData 2021 (2021)

    Google Scholar 

  5. Benferhat, S., Didier, D., Prade, H., Williams, M.-A.: A practical approach to revising prioritized knowledge bases. Studia Logica 70 (2002)

    Google Scholar 

  6. Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reason. 44, 224–243 (2007)

    Article  MathSciNet  Google Scholar 

  7. Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: In AAAI, pp. 1467–1474. AAAI Press (2015)

    Google Scholar 

  8. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argument Comput. 5(1), 5–30 (2014)

    Article  Google Scholar 

  9. Calk, C., Das, A., Waring, T.: Beyond formulas-as-cographs: an extension of Boolean logic to arbitrary graphs (2020). arXiv:2004.12941

  10. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001). https://doi.org/10.1023/A:1016740830286

    Article  MathSciNet  MATH  Google Scholar 

  11. Dubois, D., Prade, H.: Belief revision with uncertain inputs in the possibilistic setting (2013). arXiv:1302.3575

  12. Dubois, D., Prade, H.: Possibilistic logic - an overview. In: Gabbay, D.M., Siekmann, J.H., Woods, J. (eds.) Computational Logic, Volume 9 of the Handbook of The History of Logic (2014)

    Google Scholar 

  13. Dubois, D., Liub, W., Mac, J., Prade, H.: The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Inf. Fusion 32, 12–39 (2016)

    Article  Google Scholar 

  14. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Reasoning Web, vol. 5689, pp. 40–110 (2009)

    Google Scholar 

  15. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

    Article  MathSciNet  Google Scholar 

  16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. TPLP 19(1), 27–82 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Guil, F., Gomez, I., Juarez, J.M., Marin, R.: Propos: a dynamic web tool for managing possibilistic and probabilistic temporal constraint networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007, Part II. LNCS, vol. 4528, pp. 551–560. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73055-2_57

    Chapter  Google Scholar 

  18. Hunter, A., Polberg, S., Thimm, M.: Epistemic graphs for representing and reasoning with positive and negative influences of arguments. Artif. Intell. 281 (2020). https://doi.org/10.1016/j.artint.2020.103236

  19. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_3

    Chapter  Google Scholar 

  20. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2_23

    Chapter  Google Scholar 

  21. Tran, H.D., Stepanova, D., Gad-Elrab, M.H., Lisi, F.A., Weikum, G.: Towards nonmonotonic relational learning from knowledge graphs. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS (LNAI), vol. 10326, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_8

    Chapter  Google Scholar 

  22. Stepanova, D., Gad-Elrab, M.H., Ho, V.T.: Rule induction and reasoning over knowledge graphs. In: d’Amato, C., Theobald, M. (eds.) Reasoning Web 2018. LNCS, vol. 11078, pp. 142–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00338-8_6

    Chapter  Google Scholar 

  23. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  24. Wang, Z., Li, J.: DF2Rules: learning rules from RDF knowledge bases by mining frequent predicate cycles. preprint arXiv:1512.07734 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Bellandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellandi, V., Frati, F., Siccardi, S., Zuccotti, F. (2022). Management of Uncertain Data in Event Graphs. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1601. Springer, Cham. https://doi.org/10.1007/978-3-031-08971-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08971-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08970-1

  • Online ISBN: 978-3-031-08971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics