iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-08819-3_21
MAC Layer Protocols for Underwater Acoustic Sensor Networks: A Survey | SpringerLink
Skip to main content

MAC Layer Protocols for Underwater Acoustic Sensor Networks: A Survey

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2022)

Abstract

Underwater Acoustic Sensor Networks (UASN) have to cope with high and variable delays, disruptions and disconnections between nodes, because underwater acoustic channel is not appropriate for real time communications. Moreover, traditional multiple access techniques used in terrestrial wireless channel are difficult to be adopted in underwater acoustic channel. Some of the main issues are related to large variations in the instantaneous transmit power when OFDMA is used, large guard bands when FDMA is used, high Peak to Average Power Ratio, Doppler effects and so on. In this survey, we summarize the most recent works on tackling these issues and improving channel utilization, throughput, energy consumption and time synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Potter, J., Alves, J., Green, D., Zappa, G., Nissen, I., McCoy, K.: The JANUS underwater communications standard. In: 2014 Underwater Communications and Networking (UComms), Sestri Levante, pp. 1–4 (2014)

    Google Scholar 

  2. Stojanovic, M.: Underwater Acoustic Communication. Wiley Encyclopedia of Electrical and Electronics Engineering (1999). https://doi.org/10.1002/047134608X.W5411

  3. Xiong, S., Zhang, H., Zhu, X., Wang, J., Zhou, L., Zhu, M.: Key technology and experimental research of underwater acoustic networks. In: 2016 IEEE/OES China Ocean Acoustics (COA), pp. 1–5 (2016). https://doi.org/10.1109/COA.2016.7535744

  4. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Networks 3(3), 257–279 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004

    Article  Google Scholar 

  5. Yin, J., Du, P., Yang, G., Zhou, H.: Space-division multiple access for CDMA multiuser underwater acoustic communications. J. Syst. Eng. Electron. 26(6), 1184–1190 (2015). https://doi.org/10.1109/JSEE.2015.00129

    Article  Google Scholar 

  6. Wei, S., Lin, Y., Liu, W., Jiang, X., Xiaoyi, H.: Study of single-carrier coherent high-speed underwater acoustic communication. In: 2013 OCEANS - San Diego, pp. 1–4 (2013). https://doi.org/10.23919/OCEANS.2013.6740991

  7. Chen, Y., Li, W., Yi, X., Ye, J., Zhao, F., Bao, X.: A cross-self-correlation time synchronization for OFDM underwater acoustic communications. In: Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–4 (2020). https://doi.org/10.1109/IEEECONF38699.2020.9388971

  8. Jin, Z., Ding, M., Luo, Y., Li, S.: Integrated time synchronization and multiple access protocol for underwater acoustic sensor networks. IEEE Access 7, 101844–101854 (2019). https://doi.org/10.1109/ACCESS.2019.2931117

    Article  Google Scholar 

  9. Tong, F., Xu, X., Xu, T.: Frequency hopping underwater data communication system’s synchronization processing. In: IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, pp. 277–281 (2002). https://doi.org/10.1109/ICCCAS.2002.1180620

  10. Xie, Y., Hu, X., Xiao, J., Wang, D., Lei, W.: Implementation of timing synchronization for OFDM underwater communication system on FPGA. In: 2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication, pp. 568–570 (2009). https://doi.org/10.1109/ICASID.2009.5277008

  11. Zhen, C., Feng, Y., Nie, D., Zhang, J., Ning, G.: Transmission power allocation for underwater acoustic multicarrier-CDMA communication networks based on genetic algorithm. In: OCEANS 2016 - Shanghai, pp. 1–4 (2016). https://doi.org/10.1109/OCEANSAP.2016.7485656

  12. Alfouzan, F.A., Shahrabi, A., Ghoreyshi, S.M., Boutaleb, T.: An energy-conserving collision-free MAC protocol for underwater sensor networks. IEEE Access 7, 27155–27171 (2019). https://doi.org/10.1109/ACCESS.2019.2901646

    Article  Google Scholar 

  13. Lu, S., Wang, Z., Wang, Z., Zhou, S.: Throughput of underwater wireless ad hoc networks with random access: a physical layer perspective. IEEE Trans. Wirel. Commun. 14(11), 6257–6268 (2015). https://doi.org/10.1109/TWC.2015.2451625

    Article  Google Scholar 

  14. Bernard, C., Bouvet, P.J., Pottier, A., Forjonel, P.: Multiple access acoustic communication in underwater mobile networks. In: 2021 Fifth Underwater Communications and Networking Conference (UComms), pp. 1–4 (2021). https://doi.org/10.1109/UComms50339.2021.9598109

  15. Zhu, P., Xu, X., Tu, X., Chen, Y., Tao, Y.: Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication. IEEE Access 8, 13305–13314 (2020). https://doi.org/10.1109/ACCESS.2020.2966072

    Article  Google Scholar 

  16. Kulhandjian, H., Melodia, T., Koutsonikolas, D.: CDMA-based analog network coding for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 14(11), 6495–6507 (2015). https://doi.org/10.1109/TWC.2015.2456012

    Article  Google Scholar 

  17. Ma, L., Zhou, S., Qiao, G., Liu, S., Zhou, F.: Superposition coding for downlink underwater acoustic OFDM. IEEE J. Oceanic Eng. 42(1), 175–187 (2017). https://doi.org/10.1109/JOE.2016.2540741

    Article  Google Scholar 

  18. Rahmati, M., Pompili, D.: Probabilistic spatially-divided multiple access in underwater acoustic sparse networks. IEEE Trans. Mob. Comput. 19(2), 405–418 (2020). https://doi.org/10.1109/TMC.2018.2877683

    Article  Google Scholar 

  19. Morozs, N., Mitchell, P., Zakharov, Y.V.: TDA-MAC: TDMA without clock synchronization in underwater acoustic networks. IEEE Access 6, 1091–1108 (2018). https://doi.org/10.1109/ACCESS.2017.2777899

    Article  Google Scholar 

  20. Alam, M.I.I., Hossain, M.F.: On TDMA based hybrid channel MAC protocol for underwater sensor networks. In: 2016 9th International Conference on Electrical and Computer Engineering (ICECE), pp. 574–577 (2016). https://doi.org/10.1109/ICECE.2016.7853985

  21. Zhang, R., Cheng, X., Cheng, X., Yang, L.: Interference-free graph based TDMA protocol for underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 67(5), 4008–4019 (2018). https://doi.org/10.1109/TVT.2017.2778752

    Article  Google Scholar 

  22. Gorma, W., Mitchell, P.D., Morozs, N., Zakharov, Y.V.: CFDAMA-SRR: a MAC protocol for underwater acoustic sensor networks. IEEE Access 7, 60721–60735 (2019). https://doi.org/10.1109/ACCESS.2019.2915929

    Article  Google Scholar 

  23. Li, C., et al.: FDCA: a full-duplex collision avoidance MAC protocol for underwater acoustic networks. IEEE Sens. J. 16(11), 4638–4647 (2016). https://doi.org/10.1109/JSEN.2016.2547461

    Article  Google Scholar 

  24. Cui, H., Liu, C., Hong, X., Wu, J., Sun, D.: An improved BICM-ID receiver for the time-varying underwater acoustic communications with DDPSK modulation. In: 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4 (2020). https://doi.org/10.1109/ICSPCC50002.2020.9259494

  25. Zhang, L., Wang, J., Tao, J., Liu, S.: A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics. In: 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–6 (2018). https://doi.org/10.1109/ICSPCC.2018.8567790

  26. Tu, X., Xu, X., Zou, Z., Yang, L., Wu, J.: Fractional Fourier domain hopped communication method based on chirp modulation for underwater acoustic channels. J. Syst. Eng. Electron. 28(3), 449–456 (2017). https://doi.org/10.21629/JSEE.2017.03.05

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elis Kulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulla, E., Matsuo, K., Barolli, L. (2022). MAC Layer Protocols for Underwater Acoustic Sensor Networks: A Survey. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2022. Lecture Notes in Networks and Systems, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-08819-3_21

Download citation

Publish with us

Policies and ethics