Abstract
Underwater Acoustic Sensor Networks (UASN) have to cope with high and variable delays, disruptions and disconnections between nodes, because underwater acoustic channel is not appropriate for real time communications. Moreover, traditional multiple access techniques used in terrestrial wireless channel are difficult to be adopted in underwater acoustic channel. Some of the main issues are related to large variations in the instantaneous transmit power when OFDMA is used, large guard bands when FDMA is used, high Peak to Average Power Ratio, Doppler effects and so on. In this survey, we summarize the most recent works on tackling these issues and improving channel utilization, throughput, energy consumption and time synchronization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Potter, J., Alves, J., Green, D., Zappa, G., Nissen, I., McCoy, K.: The JANUS underwater communications standard. In: 2014 Underwater Communications and Networking (UComms), Sestri Levante, pp. 1–4 (2014)
Stojanovic, M.: Underwater Acoustic Communication. Wiley Encyclopedia of Electrical and Electronics Engineering (1999). https://doi.org/10.1002/047134608X.W5411
Xiong, S., Zhang, H., Zhu, X., Wang, J., Zhou, L., Zhu, M.: Key technology and experimental research of underwater acoustic networks. In: 2016 IEEE/OES China Ocean Acoustics (COA), pp. 1–5 (2016). https://doi.org/10.1109/COA.2016.7535744
Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Networks 3(3), 257–279 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004
Yin, J., Du, P., Yang, G., Zhou, H.: Space-division multiple access for CDMA multiuser underwater acoustic communications. J. Syst. Eng. Electron. 26(6), 1184–1190 (2015). https://doi.org/10.1109/JSEE.2015.00129
Wei, S., Lin, Y., Liu, W., Jiang, X., Xiaoyi, H.: Study of single-carrier coherent high-speed underwater acoustic communication. In: 2013 OCEANS - San Diego, pp. 1–4 (2013). https://doi.org/10.23919/OCEANS.2013.6740991
Chen, Y., Li, W., Yi, X., Ye, J., Zhao, F., Bao, X.: A cross-self-correlation time synchronization for OFDM underwater acoustic communications. In: Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–4 (2020). https://doi.org/10.1109/IEEECONF38699.2020.9388971
Jin, Z., Ding, M., Luo, Y., Li, S.: Integrated time synchronization and multiple access protocol for underwater acoustic sensor networks. IEEE Access 7, 101844–101854 (2019). https://doi.org/10.1109/ACCESS.2019.2931117
Tong, F., Xu, X., Xu, T.: Frequency hopping underwater data communication system’s synchronization processing. In: IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, pp. 277–281 (2002). https://doi.org/10.1109/ICCCAS.2002.1180620
Xie, Y., Hu, X., Xiao, J., Wang, D., Lei, W.: Implementation of timing synchronization for OFDM underwater communication system on FPGA. In: 2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication, pp. 568–570 (2009). https://doi.org/10.1109/ICASID.2009.5277008
Zhen, C., Feng, Y., Nie, D., Zhang, J., Ning, G.: Transmission power allocation for underwater acoustic multicarrier-CDMA communication networks based on genetic algorithm. In: OCEANS 2016 - Shanghai, pp. 1–4 (2016). https://doi.org/10.1109/OCEANSAP.2016.7485656
Alfouzan, F.A., Shahrabi, A., Ghoreyshi, S.M., Boutaleb, T.: An energy-conserving collision-free MAC protocol for underwater sensor networks. IEEE Access 7, 27155–27171 (2019). https://doi.org/10.1109/ACCESS.2019.2901646
Lu, S., Wang, Z., Wang, Z., Zhou, S.: Throughput of underwater wireless ad hoc networks with random access: a physical layer perspective. IEEE Trans. Wirel. Commun. 14(11), 6257–6268 (2015). https://doi.org/10.1109/TWC.2015.2451625
Bernard, C., Bouvet, P.J., Pottier, A., Forjonel, P.: Multiple access acoustic communication in underwater mobile networks. In: 2021 Fifth Underwater Communications and Networking Conference (UComms), pp. 1–4 (2021). https://doi.org/10.1109/UComms50339.2021.9598109
Zhu, P., Xu, X., Tu, X., Chen, Y., Tao, Y.: Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication. IEEE Access 8, 13305–13314 (2020). https://doi.org/10.1109/ACCESS.2020.2966072
Kulhandjian, H., Melodia, T., Koutsonikolas, D.: CDMA-based analog network coding for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 14(11), 6495–6507 (2015). https://doi.org/10.1109/TWC.2015.2456012
Ma, L., Zhou, S., Qiao, G., Liu, S., Zhou, F.: Superposition coding for downlink underwater acoustic OFDM. IEEE J. Oceanic Eng. 42(1), 175–187 (2017). https://doi.org/10.1109/JOE.2016.2540741
Rahmati, M., Pompili, D.: Probabilistic spatially-divided multiple access in underwater acoustic sparse networks. IEEE Trans. Mob. Comput. 19(2), 405–418 (2020). https://doi.org/10.1109/TMC.2018.2877683
Morozs, N., Mitchell, P., Zakharov, Y.V.: TDA-MAC: TDMA without clock synchronization in underwater acoustic networks. IEEE Access 6, 1091–1108 (2018). https://doi.org/10.1109/ACCESS.2017.2777899
Alam, M.I.I., Hossain, M.F.: On TDMA based hybrid channel MAC protocol for underwater sensor networks. In: 2016 9th International Conference on Electrical and Computer Engineering (ICECE), pp. 574–577 (2016). https://doi.org/10.1109/ICECE.2016.7853985
Zhang, R., Cheng, X., Cheng, X., Yang, L.: Interference-free graph based TDMA protocol for underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 67(5), 4008–4019 (2018). https://doi.org/10.1109/TVT.2017.2778752
Gorma, W., Mitchell, P.D., Morozs, N., Zakharov, Y.V.: CFDAMA-SRR: a MAC protocol for underwater acoustic sensor networks. IEEE Access 7, 60721–60735 (2019). https://doi.org/10.1109/ACCESS.2019.2915929
Li, C., et al.: FDCA: a full-duplex collision avoidance MAC protocol for underwater acoustic networks. IEEE Sens. J. 16(11), 4638–4647 (2016). https://doi.org/10.1109/JSEN.2016.2547461
Cui, H., Liu, C., Hong, X., Wu, J., Sun, D.: An improved BICM-ID receiver for the time-varying underwater acoustic communications with DDPSK modulation. In: 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4 (2020). https://doi.org/10.1109/ICSPCC50002.2020.9259494
Zhang, L., Wang, J., Tao, J., Liu, S.: A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics. In: 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–6 (2018). https://doi.org/10.1109/ICSPCC.2018.8567790
Tu, X., Xu, X., Zou, Z., Yang, L., Wu, J.: Fractional Fourier domain hopped communication method based on chirp modulation for underwater acoustic channels. J. Syst. Eng. Electron. 28(3), 449–456 (2017). https://doi.org/10.21629/JSEE.2017.03.05
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kulla, E., Matsuo, K., Barolli, L. (2022). MAC Layer Protocols for Underwater Acoustic Sensor Networks: A Survey. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2022. Lecture Notes in Networks and Systems, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-08819-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-08819-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08818-6
Online ISBN: 978-3-031-08819-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)