iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-08337-2_6
A Primer for tinyML Predictive Maintenance: Input and Model Optimisation | SpringerLink
Skip to main content

A Primer for tinyML Predictive Maintenance: Input and Model Optimisation

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

In this paper, we investigate techniques used to optimise tinyML based Predictive Maintenance (PdM). We first describe PdM and tinyML and how they can provide an alternative to cloud-based PdM. We present the background behind deploying PdM using tinyML, including commonly used libraries, hardware, datasets and models. Furthermore, we show known techniques for optimizing tinyML models. We argue that an optimisation of the entire tinyML pipeline, not just the actual models, is required to deploy tinyML based PdM in an industrial setting. To provide an example, we create a tinyML model and provide early results of optimising the input given to the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ARM: Processor ip for the widest range of devices. https://www.arm.com/products/silicon-ip-cpu

  2. Banbury, C., Reddi, V.J., Torelli, P., Jeffries, N., Kiraly, C., et al.: MLPerf tiny benchmark. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, Round 1 (2021)

    Google Scholar 

  3. Bernstein, L., Sludds, A., Hamerly, R., Sze, V., Emer, J., Englund, D.: Freely scalable and reconfigurable optical hardware for deep learning. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  4. David, R., et al.: Tensorflow lite micro: embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 3, 800–811 (2021)

    Google Scholar 

  5. Dutta, D.L., Bharali, S.: TinyML Meets IoT: a comprehensive survey. Internet of Things 16, 100461 (2021). https://doi.org/10.1016/j.iot.2021.100461

    Article  Google Scholar 

  6. edX: Professional certificate in tiny machine learning (tinyml). https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

  7. Fafoutis, X., Marchegiani, L., Elsts, A., Pope, J., Piechocki, R., Craddock, I.: Extending the battery lifetime of wearable sensors with embedded machine learning. In: IEEE 4th World Forum on Internet of Things, WF-IoT, pp. 269–274 (2018)

    Google Scholar 

  8. tinyML Foundation: About us tinyml. https://www.tinyml.org/

  9. Garofalo, A., Rusci, M., Conti, F., Rossi, D., Benini, L.: Pulp-NN: accelerating quantized neural networks on parallel ultra-low-power RISC-v processors. Phil. Trans. R. Soc. A 378(2164), 20190155 (2020)

    Article  MathSciNet  Google Scholar 

  10. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding (2015). arXiv preprint, arXiv:1510.00149

  11. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network 2(7) (2015). arXiv preprint, arXiv:1503.02531

  12. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint, arXiv:1704.04861

  13. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

    Google Scholar 

  14. Khan, A., Hammerla, N., Mellor, S., Plötz, T.: Optimising sampling rates for accelerometer-based human activity recognition. Pattern Recogn. Lett. 73, 33–40 (2016)

    Article  Google Scholar 

  15. Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: Toyadmos: a dataset of miniature-machine operating sounds for anomalous sound detection. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPAA, pp. 313–317 (2019)

    Google Scholar 

  16. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 kb ram for the internet of things. In: International Conference on Machine Learning, pp. 1935–1944 (2017)

    Google Scholar 

  17. Lai, L., Suda, N., Chandra, V.: CMSIS-NN: Efficient neural network kernels for arm cortex-m cpus (2018). arXiv preprint, arXiv:1801.06601

  18. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. Adv. Neural Inf. Proc. Syst. 2, 598–605 (1989)

    Google Scholar 

  19. Marchegiani, L., Newman, P.: Listening for sirens: locating and classifying acoustic alarms in city scenes. IEEE Trans. Intell. Transp. Syst. 1–10 (2022). https://doi.org/10.1109/TITS.2022.3158076

  20. Moons, B., Bankman, D., Yang, L., Murmann, B., Verhelst, M.: Binareye: an always-on energy-accuracy-scalable binary CNN processor with all memory on chip in 28nm cmos. In: IEEE Custom Integrated Circuits Conference, CICC, pp. 1–4 (2018)

    Google Scholar 

  21. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M., Blankevoort, T.: A white paper on neural network quantization (2021). arXiv preprint, arXiv:2106.08295

  22. Purohit, H., et al.: Mimii dataset: Sound dataset for malfunctioning industrial machine investigation and inspection (2019). arXiv preprint, arXiv:1909.09347

  23. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: Systems, purposes and approaches (2019). arXiv preprint, arXiv:1912.07383

  24. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Enabling AI at the edge with xnor-networks. Commun. ACM 63(12), 83–90 (2020)

    Article  Google Scholar 

  25. Ray, P.P.: A review on tinyml: state-of-the-art and prospects. J. King Saud Univ. Comput. Inf. Sci. 32(4), 1595–1623 (2021)

    Google Scholar 

  26. Sanchez-Iborra, R., Skarmeta, A.F.: Tinyml-enabled frugal smart objects: challenges and opportunities. IEEE Circuits Syst. Mag. 20, 4–18 (2020)

    Article  Google Scholar 

  27. Saxena, A., Goebel, K.: Turbofan engine degradation simulation data set. In: NASA Ames Prognostics Data Repository, pp. 1551–3203 (2008)

    Google Scholar 

  28. Siang, Y.Y., Ahamd, M.R., Abidin, M.S.Z.: Anomaly detection based on tiny machine learning: a review. Open Int. J. Inf. 9(Special Issue 2), 67–78 (2021)

    Google Scholar 

  29. Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification (2014). arXiv preprint, arXiv:1403.1687

  30. TensorFlow: Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/microcontrollers

  31. Tzimpragos, G., Madhavan, A., Vasudevan, D., Strukov, D., Sherwood, T.: In-sensor classification with boosted race trees. Commun. ACM 64(6), 99–105 (2021)

    Article  Google Scholar 

  32. Warden, P., Situnayake, D.: TinyML. O’Reilly Media, Incorporated (2019)

    Google Scholar 

  33. Zalewski, P., Marchegiani, L., Elsts, A., Piechocki, R., Craddock, I., Fafoutis, X.: From bits of data to bits of knowledge-an on-board classification framework for wearable sensing systems. Sensors 20(6), 1655 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Innovation Fund Denmark for the project DIREC (9142-00001B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Njor .

Editor information

Editors and Affiliations

Ethics declarations

Resources

The source code used for the experiments is publicly accessible on GitHub: https://github.com/Ekhao/ToyADMOSTinyAutoencoder.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Njor, E., Madsen, J., Fafoutis, X. (2022). A Primer for tinyML Predictive Maintenance: Input and Model Optimisation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08337-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08336-5

  • Online ISBN: 978-3-031-08337-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics