Abstract
In this paper, we investigate techniques used to optimise tinyML based Predictive Maintenance (PdM). We first describe PdM and tinyML and how they can provide an alternative to cloud-based PdM. We present the background behind deploying PdM using tinyML, including commonly used libraries, hardware, datasets and models. Furthermore, we show known techniques for optimizing tinyML models. We argue that an optimisation of the entire tinyML pipeline, not just the actual models, is required to deploy tinyML based PdM in an industrial setting. To provide an example, we create a tinyML model and provide early results of optimising the input given to the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ARM: Processor ip for the widest range of devices. https://www.arm.com/products/silicon-ip-cpu
Banbury, C., Reddi, V.J., Torelli, P., Jeffries, N., Kiraly, C., et al.: MLPerf tiny benchmark. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, Round 1 (2021)
Bernstein, L., Sludds, A., Hamerly, R., Sze, V., Emer, J., Englund, D.: Freely scalable and reconfigurable optical hardware for deep learning. Sci. Rep. 11(1), 1–12 (2021)
David, R., et al.: Tensorflow lite micro: embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 3, 800–811 (2021)
Dutta, D.L., Bharali, S.: TinyML Meets IoT: a comprehensive survey. Internet of Things 16, 100461 (2021). https://doi.org/10.1016/j.iot.2021.100461
edX: Professional certificate in tiny machine learning (tinyml). https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
Fafoutis, X., Marchegiani, L., Elsts, A., Pope, J., Piechocki, R., Craddock, I.: Extending the battery lifetime of wearable sensors with embedded machine learning. In: IEEE 4th World Forum on Internet of Things, WF-IoT, pp. 269–274 (2018)
tinyML Foundation: About us tinyml. https://www.tinyml.org/
Garofalo, A., Rusci, M., Conti, F., Rossi, D., Benini, L.: Pulp-NN: accelerating quantized neural networks on parallel ultra-low-power RISC-v processors. Phil. Trans. R. Soc. A 378(2164), 20190155 (2020)
Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding (2015). arXiv preprint, arXiv:1510.00149
Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network 2(7) (2015). arXiv preprint, arXiv:1503.02531
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint, arXiv:1704.04861
Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)
Khan, A., Hammerla, N., Mellor, S., Plötz, T.: Optimising sampling rates for accelerometer-based human activity recognition. Pattern Recogn. Lett. 73, 33–40 (2016)
Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: Toyadmos: a dataset of miniature-machine operating sounds for anomalous sound detection. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPAA, pp. 313–317 (2019)
Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 kb ram for the internet of things. In: International Conference on Machine Learning, pp. 1935–1944 (2017)
Lai, L., Suda, N., Chandra, V.: CMSIS-NN: Efficient neural network kernels for arm cortex-m cpus (2018). arXiv preprint, arXiv:1801.06601
LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. Adv. Neural Inf. Proc. Syst. 2, 598–605 (1989)
Marchegiani, L., Newman, P.: Listening for sirens: locating and classifying acoustic alarms in city scenes. IEEE Trans. Intell. Transp. Syst. 1–10 (2022). https://doi.org/10.1109/TITS.2022.3158076
Moons, B., Bankman, D., Yang, L., Murmann, B., Verhelst, M.: Binareye: an always-on energy-accuracy-scalable binary CNN processor with all memory on chip in 28nm cmos. In: IEEE Custom Integrated Circuits Conference, CICC, pp. 1–4 (2018)
Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M., Blankevoort, T.: A white paper on neural network quantization (2021). arXiv preprint, arXiv:2106.08295
Purohit, H., et al.: Mimii dataset: Sound dataset for malfunctioning industrial machine investigation and inspection (2019). arXiv preprint, arXiv:1909.09347
Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: Systems, purposes and approaches (2019). arXiv preprint, arXiv:1912.07383
Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Enabling AI at the edge with xnor-networks. Commun. ACM 63(12), 83–90 (2020)
Ray, P.P.: A review on tinyml: state-of-the-art and prospects. J. King Saud Univ. Comput. Inf. Sci. 32(4), 1595–1623 (2021)
Sanchez-Iborra, R., Skarmeta, A.F.: Tinyml-enabled frugal smart objects: challenges and opportunities. IEEE Circuits Syst. Mag. 20, 4–18 (2020)
Saxena, A., Goebel, K.: Turbofan engine degradation simulation data set. In: NASA Ames Prognostics Data Repository, pp. 1551–3203 (2008)
Siang, Y.Y., Ahamd, M.R., Abidin, M.S.Z.: Anomaly detection based on tiny machine learning: a review. Open Int. J. Inf. 9(Special Issue 2), 67–78 (2021)
Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification (2014). arXiv preprint, arXiv:1403.1687
TensorFlow: Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/microcontrollers
Tzimpragos, G., Madhavan, A., Vasudevan, D., Strukov, D., Sherwood, T.: In-sensor classification with boosted race trees. Commun. ACM 64(6), 99–105 (2021)
Warden, P., Situnayake, D.: TinyML. O’Reilly Media, Incorporated (2019)
Zalewski, P., Marchegiani, L., Elsts, A., Piechocki, R., Craddock, I., Fafoutis, X.: From bits of data to bits of knowledge-an on-board classification framework for wearable sensing systems. Sensors 20(6), 1655 (2020)
Acknowledgement
This work is supported by the Innovation Fund Denmark for the project DIREC (9142-00001B).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Resources
The source code used for the experiments is publicly accessible on GitHub: https://github.com/Ekhao/ToyADMOSTinyAutoencoder.
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Njor, E., Madsen, J., Fafoutis, X. (2022). A Primer for tinyML Predictive Maintenance: Input and Model Optimisation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-08337-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08336-5
Online ISBN: 978-3-031-08337-2
eBook Packages: Computer ScienceComputer Science (R0)