iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-06527-9_43
An Approach to Emotions Through Lexical Availability | SpringerLink
Skip to main content

An Approach to Emotions Through Lexical Availability

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Abstract

People are able of transforming emotions into words, as a mechanism to communicate it. Additionally people are able to express emotions which can be grouped around specific interest centers. These two elements are considered as the basis for this work, which analyzes how people react when exposed to similar concepts. Different human groups are able to express themselves about a common phenomenon, by using different lexical elements. This work collects information from different geographic regions, considering an heterogeneous population. We present in this work the way people using a common language represent concepts which describe emotions depending on location and other variables, like educational level, gender and age, among others. The collection of the available lexicon is achieved through the use of the lexical availability methodology, supported by using neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, S., Loper E., Klein, E.: Natural Language Processing with Python. O’Reilly Media Inc. (2009)

    Google Scholar 

  2. Blanco, O., Salcedo, P., Kotz, G.: Lexical analysis of emotions: an approach using lexical availability and graph theory (in Spanish). Linguística y Literatura 78, 56–84 (2020)

    Google Scholar 

  3. Cellealta Barroso, F., Gallego Gallego D.: Medidas de disponibilidad léxica: comparabilidad y normalización (in Spanish). Boletín de Filología, vol. 511, Santiago, Chile (2016)

    Google Scholar 

  4. Echeverría, M., Urzúa, P., Figueroa, I.: Dispogen II. Programa computacional para el análisis de la disponiblidad léxica (in Spanish), Universidad de Concepción (2005)

    Google Scholar 

  5. Echeverría, M., Vargas, R., Urzúa, P., Ferreira, R.: Una nueva herramienta computacional para el análisis de relaciones semánticas en el léxico disponible (in Spanish). RLA, Revista de Linguística Teórica y Aplicada 46, 81–91 (2008)

    Google Scholar 

  6. Li, F., Zhang, X., Lu, A., Xu, L., Ren, D., You, T.: Estimation of metal elements content in soil using x-ray fluorescence based on multilayer perceptron. Environ. Monit. Assess. 194, 95 (2022)

    Article  Google Scholar 

  7. Carmen, F.J., Natividad, H.M.: Revista electrónica de estudios hispánicos: Lexical and socionomastics availability (in Spanish). Ogigia. 25, 185–2010 (2018)

    Google Scholar 

  8. Górriz, J.M.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Google Scholar 

  9. Grunewald, U., Osorio, J.: To feel, to say, to do: expressive variety and emotion prototypes in the youth vocabulary. Onomazein 22, 125–163 (2010)

    Article  Google Scholar 

  10. Kolagati, S., Priyadharshini, T., Mary Anita Rajam, V.: Exposing deepfakes using a deep multilayer perceptron - convolutional neural network model. Int. J. Inf. Manage. Data Insights 2(1), 100054 (2022)

    Google Scholar 

  11. Masip, D., Aran-Ramspott, S., Ruiz-Caballero, C., Suau, J., Almenar, E., Puertas-Graell, D.: Consumo informativo y cobertura mediática durante el confinamiento por el Covid-19: sobreinformación, sesgo ideológico y sensacionalismo (in Spanish). El Profesional de la información 29(3), 1–12 (2020). https://doi.org/10.3145/epi.2020.may.12

    Article  Google Scholar 

  12. Picard, R.: Affective Computing for HCI. The MIT Press (1997)

    Google Scholar 

  13. Plutchik, R.: The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)

    Article  Google Scholar 

  14. Reeve, J.: Understanding Motivation and Emotion, 7th edn. Wiley (2018)

    Google Scholar 

  15. Salcedo, P., Morales-Candia, S., Fuentes-Riffo, K., Rivera-Robles, S., Sanhueza-Campos, C.: Teachers’ perception analysis on students’ emotion in virtual classes during covid-19 pandemic: a lexical availability approach. Sustainability 13(6413), 2021 (2021)

    Google Scholar 

  16. Kanti Karmaker, S., Hassan, M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: AutoML to date and beyond: challenges and opportunities. ACM Comput. Surv. 54(8), 1–36 (2022)

    Google Scholar 

  17. https://www.ibm.com/cl-es/products/spss-statistics. (visited January 2022)

  18. https://cloud.google.com/automl. (visited January 2022)

  19. Val-Calvo, M., Alvarez-Sánchez, J.R., Ferrández-Vicente, J.M., Fernández, E.: Affective-robot story-telling human-robot interaction: exploratory real-time emotion estimation analysis using facial expressions and physiological signals. IEEE Access 8, 134051–134066 (2020)

    Article  Google Scholar 

  20. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl. Based Syst. 212, 106622 (2021)

    Article  Google Scholar 

  21. Xu, Y., Li, F., Asgari, A.: Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms. Energy 240, 122692 (2022)

    Article  Google Scholar 

  22. Zoeller, M.-A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 122692 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgement

This study has been partially supported by Project Fondecyt 1201572, National Agency for Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ricardo Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salcedo-Lagos, P., Pinacho-Davidson, P., Pinninghoff, J.M.A., Kotz, G.G., Contreras, A.R. (2022). An Approach to Emotions Through Lexical Availability. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics