iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-031-04447-2_16
Automatic Detection of Deaths from Social Networking Sites | SpringerLink
Skip to main content

Automatic Detection of Deaths from Social Networking Sites

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2021)

Abstract

The automatic detection of deaths of users of social networking sites provides a step towards the creation and adoption of an international standard for transferring digital estates to the next-of-kin of Internet users who die a sudden death. In this work, we develop a natural language processing (NLP)-based method for detecting deaths from posts and comments of concerned followers associated with user profiles. We analysed the differences between linguistic characteristics and practices in pre- and post-mortem contents, and developed text classifiers that achieved satisfactory performance in detecting deaths from the online posts. A new corpus was developed by leveraging data from Wikidata and Twitter. Machine learning models, both traditional (RF, KNN, LR and SVM) and deep learning (BiLSTM, CNN and BERT) were trained on features extracted using a variety of techniques: TF-IDF and pre-trained embeddings (Glove, Word2Vec and Fasttext) to classify pre- and post-mortem contents. The results obtained showed that BERT model outperformed all other models. Analysing the linguistic characteristics and practices showed, not surprisingly, that feelings that suggest negativity are dominant in post-mortem tweets and feelings that suggest positivity are dominant in pre-mortem tweets. It was also found that the number of words, personal pronouns, verbs, and family, religious, death, and swear words are higher in post-mortem tweets, whereas, the number of impersonal pronouns and informal words are higher in pre-mortem tweets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.caringbridge.org.

  2. 2.

    https://huggingface.co.

  3. 3.

    https://pypi.org/project/text2emotion/.

References

  1. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship. J. Comput.-Mediat. Commun. 13(1), 210–230 (2007)

    Article  Google Scholar 

  2. Brubaker, J., Swaine, F., Taber, L., Hayes, G.: The language of bereavement and distress in social media. In: AAAI (2011)

    Google Scholar 

  3. Brubaker, J., Kivran-Swaine, F., Taber, L., Hayes, G.: Grief-stricken in a crowd: the language of bereavement and distress in social media. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 6 (2012)

    Google Scholar 

  4. Brubaker, J.R., et al.: Describing and classifying post-mortem content on social media. In: Twelfth International AAAI Conference on Web and Social Media (2018)

    Google Scholar 

  5. Brubaker, J., Hayes, G., Dourish, P.: Beyond the grave: Interpretation and participation in peri-mortem behavior on facebook. Inf. Soc. Int. J. 3, 152–163 (2012)

    Google Scholar 

  6. Carroll, B., Landry, K.: Logging on and letting out: Using online social networks to grieve and to mourn. Bull. Sci. Technol. Soc. 30(5), 341–349 (2010)

    Article  Google Scholar 

  7. Cerf, V., Aboba, B.: How the Internet Came To Be. The On-line User’s Encyclopedia: Bulletin Boards and Beyond. Addison-Wesley, Reading (1993)

    Google Scholar 

  8. Chancellor, S., Lin, Z., Goodman, E.L., Zerwas, S., De Choudhury, M.: Quantifying and predicting mental illness severity in online pro-eating disorder communities. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, pp. 1171–1184 (2016)

    Google Scholar 

  9. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  10. De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  11. DeGroot, J.M.: Facebook memorial walls and CMC’s effect on the grieving process. In: Annual Meeting of the National Communication Association, San Diego, CA (2008)

    Google Scholar 

  12. Dickinson, G.: Shared grief is good grief. In: Phi Kappa Phi Forum, vol. 91, pp. 10–12. Honor Society of Phi Kappa Phi (2011)

    Google Scholar 

  13. Feldmann, A., et al.: The lockdown effect: Implications of the COVID-19 pandemic on internet traffic. In: Proceedings of the ACM Internet Measurement Conference, pp. 1–18 (2020)

    Google Scholar 

  14. Filannino, M., Di Bari, M.: Gold standard vs. silver standard: the case of dependency parsing for italian. CLiC it, p. 141 (2015)

    Google Scholar 

  15. Gathman, E.C.H.: “Where everybody knows your name... and can call bullshit”: collaborative self-presentation and information disclosure on Facebook. The University of Wisconsin-Madison (2014)

    Google Scholar 

  16. Getty, E., Cobb, J., Gabeler, M., Nelson, C., Weng, E., Hancock, J.: I said your name in an empty room: Grieving and continuing bonds on facebook. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 997–1000 (2011)

    Google Scholar 

  17. Google: About inactive account manager (2021). https://support.google.com/accounts/answer/3036546

  18. Hillis, J.: Digitalizing Death: A Study of the Influence of Social Media on the Grieving Process. Ph.D. thesis, Boston College. College of Arts and Sciences (2018)

    Google Scholar 

  19. Hopkins, J.P.: Afterlife in the cloud: managing a digital estate. Hastings Sci. Tech. LJ 5, 209 (2013)

    Google Scholar 

  20. Hutto, C., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8 (2014)

    Google Scholar 

  21. Jiang, J., Brubaker, J.: Describing and classifying post-mortem content on social media. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 12 (2018)

    Google Scholar 

  22. Jiang, J.A., Brubaker, J.R.: Tending unmarked graves: Classification of post-mortem content on social media. In: Proceedings of the ACM on Human-Computer Interaction 2(CSCW), pp. 1–19 (2018)

    Google Scholar 

  23. Katims, L.: Grieving on facebook: How the site helps people. Time/CNN (2010)

    Google Scholar 

  24. Kotikalapudi, R., Chellappan, S., Montgomery, F., Wunsch, D., Lutzen, K.: Associating depressive symptoms in college students with internet usage using real internet data. IEEE Technol. Soc. Mag. 31(4), 73–80 (2012)

    Article  Google Scholar 

  25. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  Google Scholar 

  26. Ma, H., et al.: Write for life: Persisting in online health communities through expressive writing and social support. In: Proceedings of the ACM on Human-Computer Interaction 1(CSCW), pp. 1–24 (2017)

    Google Scholar 

  27. Mansour, S.: Social media analysis of user’s responses to terrorism using sentiment analysis and text mining. Procedia Comput. Sci. 140, 95–103 (2018)

    Article  Google Scholar 

  28. McCallig, D.: Facebook after death: an evolving policy in a social network. Int. J. Law Inf. Technol. 22(2), 107–140 (2014)

    Article  Google Scholar 

  29. Moore, J., Magee, S., Gamreklidze, E., Kowalewski, J.: Social media mourning: Using grounded theory to explore how people grieve on social networking sites. OMEGA-J. Death Dying 79(3), 231–259 (2019)

    Article  Google Scholar 

  30. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070 (2002)

    Google Scholar 

  31. Pennebaker, J.W., Chung, C.K., Frazee, J., Lavergne, G.M., Beaver, D.I.: When small words foretell academic success: The case of college admissions essays. PLoS ONE 9(12), e115844 (2014)

    Article  Google Scholar 

  32. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates 71(2001), 2001 (2001)

    Google Scholar 

  33. Perrone, M.: What happens when we die: estate planning of digital assets. CommLaw Conspectus 21, 185 (2012)

    Google Scholar 

  34. Roberts, P., Vidal, L.A.: Perpetual care in cyberspace: a portrait of memorials on the web. OMEGA-J. Death Dying 40(4), 521–545 (2000)

    Article  Google Scholar 

  35. Romanoff, B.D.: Rituals and the grieving process. Death Stud. 22(8), 697–711 (1998)

    Article  Google Scholar 

  36. Sproat, R., Black, A.W., Chen, S., Kumar, S., Ostendorf, M., Richards, C.: Normalization of non-standard words. Comput. Speech Lang. 15(3), 287–333 (2001)

    Article  Google Scholar 

  37. Walker, R.: Cyberspace when you’re dead. New York Times 5 (2011)

    Google Scholar 

  38. Zhang, D.: Inconsistencies in big data. In: 2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing, pp. 61–67. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuhu Ibrahim or Riza Batista-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, N., Batista-Navarro, R. (2022). Automatic Detection of Deaths from Social Networking Sites. In: Lossio-Ventura, J.A., et al. Information Management and Big Data. SIMBig 2021. Communications in Computer and Information Science, vol 1577. Springer, Cham. https://doi.org/10.1007/978-3-031-04447-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04447-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04446-5

  • Online ISBN: 978-3-031-04447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics