iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-97532-6_11
Do Fake News Between Different Languages Talk Alike? A Case Study of COVID-19 Related Fake News | SpringerLink
Skip to main content

Do Fake News Between Different Languages Talk Alike? A Case Study of COVID-19 Related Fake News

  • Conference paper
  • First Online:
Secure Knowledge Management In The Artificial Intelligence Era (SKM 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1549))

  • 498 Accesses

Abstract

Social media fuels fake news’ spread across the world. English news has dominated existing fake news research, and how fake news in different languages compares remains severely under studied. To address this scarcity of literature, this research examines the content and linguistic behaviors of fake news in relation to COVID-19. The comparisons reveal both differences and similarities between English and Spanish fake news. The findings have implications for global collaboration in combating fake news.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abonizio, H.Q., de Morais, J.I., Tavares, G.M., Barbon Junior, S.: Language-independent fake news detection: English, Portuguese, and Spanish mutual features. Future Internet 12(5), 87 (2020). https://doi.org/10.3390/fi12050087

  2. Akhter, M.P., Zheng, J., Afzal, F., Lin, H., Riaz, S., Mehmood, A.: Supervised ensemble learning methods towards automatically filtering Urdu fake news within social media. PeerJ Comput. Sci. 7, e425 (2021)

    Google Scholar 

  3. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news. In: Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018)

    Google Scholar 

  4. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for fake news detection. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 312–320. Association for Computing Machinery, Melbourne VIC, Australia (2019)

    Google Scholar 

  5. Blanco-Herrero, D., Calderón, C.A.: Spread and reception of fake news promoting hate speech against migrants and refugees in social media: research plan for the doctoral programme education in the knowledge society. In: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 949–955. Association for Computing Machinery, León, Spain (2019)

    Google Scholar 

  6. Amjad, M., Sidorov, G., Zhila, A., Gelbukh, A., Rosso, P.: UrduFake@FIRE2020: shared track on fake news identification in urdu. In: Forum for Information Retrieval Evaluation, pp. 37–40. Association for Computing Machinery: Hyderabad, India (2020)

    Google Scholar 

  7. Al-Ash, H.S., Putri, M.F., Mursanto, P., Bustamam, A.: Ensemble learning approach on indonesian fake news classification. In: 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS) (2019)

    Google Scholar 

  8. Kishore Shahi, G., Nandini, D.: FakeCovid – A Multilingual Cross-domain Fact Check News Dataset for COVID-19. arXiv:2006.11343 (2020)

  9. Posadas-Durán, J., Gómez-Adorno, H., Sidorov, G., Escobar, J.J.M.: Detection of fake news in a new corpus for the Spanish language. J. Intell. Fuzzy Syst. 36, 4869–4876 (2019)

    Article  Google Scholar 

  10. Faustini, P.H.A., Covões, T.F.: Fake news detection in multiple platforms and languages. Exp. Syst. Appl. 158, 113503 (2020)

    Google Scholar 

  11. Dementieva, D., Panchenko, A.: Fake news detection using multilingual evidence. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 755–756 (2020). https://doi.org/10.1109/DSAA49011.2020.00111

  12. Buller, D.B., Burgoon, J.K.: Interpersonal deception theory. Commun. Theory 6(3), 203–242 (1996)

    Article  Google Scholar 

  13. DePaulo, B.M., Lindsay, J.J., Malone, B.E., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to deception. Psychol. Bull. 129(1), 74–112 (2003)

    Article  Google Scholar 

  14. Zhou, L.: An empirical investigation of deception behavior in instant messaging. IEEE Trans. Prof. Commun. 48(2), 147–160 (2005)

    Article  Google Scholar 

  15. Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automated linguistics based cues for detecting deception in text-based asynchronous computer-mediated communication: an empirical investigation. Group Decis. Negot. 13(1), 81–106 (2004)

    Article  Google Scholar 

  16. Zhou, L., Sung, Y.: Cues to deception in online chinese groups. In: Hawaii International Conference on System Sciences (HICSS-41). Big Island, HI, USA (2008)

    Google Scholar 

  17. Pérez-Rosas, V., Mihalcea, R.: Cross-cultural Deception Detection. n: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 440–445. Association for Computational Linguistics, Baltimore, Maryland (2014). https://doi.org/10.3115/v1/P14-2072

  18. Almela, Á., Valencia-García, R., Cantos, P.: Seeing through Deception: A Computational Approach to Deceit Detection in Written Communication. In: Proceedings of the Workshop on Computational Approaches to Deception Detection, pp. 15–22. Association for Computational Linguistics, Avignon, France (2012)

    Google Scholar 

  19. Shahi, G., Nandini, D.: FakeCovid – A multilingual cross-domain fact check news dataset for COVID-19. In: Workshop on Cyber Social Threats (CySoc 2020) at 14th International Conference on Web and Social Media 2020 (2020)

    Google Scholar 

  20. Fighting the Infodemic: The #CoronaVirusFacts Alliance. Cited on 10 Aug 2021. https://www.poynter.org/coronavirusfactsalliance/

  21. Snopes.com: Debunking Myths in Cyberspace. 27 August (2005). https://www.npr.org/templates/story/story.php?storyId=4819108

  22. Statista. Internet: most common languages online (2020). https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet

  23. Pennebaker, J.W., Chung, C.K., Ireland, M., Gonzales, A., Booth, R.J.: The development and psychometric properties of LIWC2007. LIWC.net, Austin, TX (2007)

    Google Scholar 

  24. Reimers, N., Gurevych, I. Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 4512–4525. Association for Computational Linguistics (2020)

    Google Scholar 

  25. Conneau, A., et al.: Unsupervised Cross-lingual Representation Learning at Scale. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451. Association for Computational Linguistics (2020)

    Google Scholar 

  26. McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:802.03426 (2018)

  27. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng,, V.S., Cao,, L., Motoda, H., Xu,, G. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. LNCS, vol. 7819. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37456-2_14

  28. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. Association for Computing Machinery, Melbourne, Australia (1998)

    Google Scholar 

  29. Aletras, N., Stevenson, M.: Evaluating Topic Coherence Using Distributional Semantics. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS), Potsdam, Germany, Association for Computational Linguistics, pp. 13–22 (2013)

    Google Scholar 

  30. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  31. Emre Celebi, M. (ed.): Partitional Clustering Algorithms. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-09259-1

    Book  MATH  Google Scholar 

  32. Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, pp. 288–296. Curran Associates Inc., Vancouver, British Columbia, Canada (2009)

    Google Scholar 

  33. O’Callaghan, D., Greene, D., Carthy, J., Cunningham, P.: An analysis of the coherence of descriptors in topic modeling. Expert Syst. Appl. 42(13), 5645–5657 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science Foundation [Award #s: CNS 1917537 and SES 1912898] and the School of Data Science at UNC Charlotte. Any opinions, findings, and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the above funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Tao, J., Lai, E., Zhang, D. (2022). Do Fake News Between Different Languages Talk Alike? A Case Study of COVID-19 Related Fake News. In: Krishnan, R., Rao, H.R., Sahay, S.K., Samtani, S., Zhao, Z. (eds) Secure Knowledge Management In The Artificial Intelligence Era. SKM 2021. Communications in Computer and Information Science, vol 1549. Springer, Cham. https://doi.org/10.1007/978-3-030-97532-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97532-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97531-9

  • Online ISBN: 978-3-030-97532-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics