Abstract
Social media fuels fake news’ spread across the world. English news has dominated existing fake news research, and how fake news in different languages compares remains severely under studied. To address this scarcity of literature, this research examines the content and linguistic behaviors of fake news in relation to COVID-19. The comparisons reveal both differences and similarities between English and Spanish fake news. The findings have implications for global collaboration in combating fake news.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abonizio, H.Q., de Morais, J.I., Tavares, G.M., Barbon Junior, S.: Language-independent fake news detection: English, Portuguese, and Spanish mutual features. Future Internet 12(5), 87 (2020). https://doi.org/10.3390/fi12050087
Akhter, M.P., Zheng, J., Afzal, F., Lin, H., Riaz, S., Mehmood, A.: Supervised ensemble learning methods towards automatically filtering Urdu fake news within social media. PeerJ Comput. Sci. 7, e425 (2021)
Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news. In: Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics, Santa Fe, New Mexico, USA (2018)
Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for fake news detection. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 312–320. Association for Computing Machinery, Melbourne VIC, Australia (2019)
Blanco-Herrero, D., Calderón, C.A.: Spread and reception of fake news promoting hate speech against migrants and refugees in social media: research plan for the doctoral programme education in the knowledge society. In: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 949–955. Association for Computing Machinery, León, Spain (2019)
Amjad, M., Sidorov, G., Zhila, A., Gelbukh, A., Rosso, P.: UrduFake@FIRE2020: shared track on fake news identification in urdu. In: Forum for Information Retrieval Evaluation, pp. 37–40. Association for Computing Machinery: Hyderabad, India (2020)
Al-Ash, H.S., Putri, M.F., Mursanto, P., Bustamam, A.: Ensemble learning approach on indonesian fake news classification. In: 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS) (2019)
Kishore Shahi, G., Nandini, D.: FakeCovid – A Multilingual Cross-domain Fact Check News Dataset for COVID-19. arXiv:2006.11343 (2020)
Posadas-Durán, J., Gómez-Adorno, H., Sidorov, G., Escobar, J.J.M.: Detection of fake news in a new corpus for the Spanish language. J. Intell. Fuzzy Syst. 36, 4869–4876 (2019)
Faustini, P.H.A., Covões, T.F.: Fake news detection in multiple platforms and languages. Exp. Syst. Appl. 158, 113503 (2020)
Dementieva, D., Panchenko, A.: Fake news detection using multilingual evidence. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 755–756 (2020). https://doi.org/10.1109/DSAA49011.2020.00111
Buller, D.B., Burgoon, J.K.: Interpersonal deception theory. Commun. Theory 6(3), 203–242 (1996)
DePaulo, B.M., Lindsay, J.J., Malone, B.E., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to deception. Psychol. Bull. 129(1), 74–112 (2003)
Zhou, L.: An empirical investigation of deception behavior in instant messaging. IEEE Trans. Prof. Commun. 48(2), 147–160 (2005)
Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automated linguistics based cues for detecting deception in text-based asynchronous computer-mediated communication: an empirical investigation. Group Decis. Negot. 13(1), 81–106 (2004)
Zhou, L., Sung, Y.: Cues to deception in online chinese groups. In: Hawaii International Conference on System Sciences (HICSS-41). Big Island, HI, USA (2008)
Pérez-Rosas, V., Mihalcea, R.: Cross-cultural Deception Detection. n: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 440–445. Association for Computational Linguistics, Baltimore, Maryland (2014). https://doi.org/10.3115/v1/P14-2072
Almela, Á., Valencia-García, R., Cantos, P.: Seeing through Deception: A Computational Approach to Deceit Detection in Written Communication. In: Proceedings of the Workshop on Computational Approaches to Deception Detection, pp. 15–22. Association for Computational Linguistics, Avignon, France (2012)
Shahi, G., Nandini, D.: FakeCovid – A multilingual cross-domain fact check news dataset for COVID-19. In: Workshop on Cyber Social Threats (CySoc 2020) at 14th International Conference on Web and Social Media 2020 (2020)
Fighting the Infodemic: The #CoronaVirusFacts Alliance. Cited on 10 Aug 2021. https://www.poynter.org/coronavirusfactsalliance/
Snopes.com: Debunking Myths in Cyberspace. 27 August (2005). https://www.npr.org/templates/story/story.php?storyId=4819108
Statista. Internet: most common languages online (2020). https://www.statista.com/statistics/262946/share-of-the-most-common-languages-on-the-internet
Pennebaker, J.W., Chung, C.K., Ireland, M., Gonzales, A., Booth, R.J.: The development and psychometric properties of LIWC2007. LIWC.net, Austin, TX (2007)
Reimers, N., Gurevych, I. Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 4512–4525. Association for Computational Linguistics (2020)
Conneau, A., et al.: Unsupervised Cross-lingual Representation Learning at Scale. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451. Association for Computational Linguistics (2020)
McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:802.03426 (2018)
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng,, V.S., Cao,, L., Motoda, H., Xu,, G. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. LNCS, vol. 7819. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. Association for Computing Machinery, Melbourne, Australia (1998)
Aletras, N., Stevenson, M.: Evaluating Topic Coherence Using Distributional Semantics. In: Proceedings of the 10th International Conference on Computational Semantics (IWCS), Potsdam, Germany, Association for Computational Linguistics, pp. 13–22 (2013)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Emre Celebi, M. (ed.): Partitional Clustering Algorithms. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-09259-1
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, pp. 288–296. Curran Associates Inc., Vancouver, British Columbia, Canada (2009)
O’Callaghan, D., Greene, D., Carthy, J., Cunningham, P.: An analysis of the coherence of descriptors in topic modeling. Expert Syst. Appl. 42(13), 5645–5657 (2015)
Acknowledgements
This research was partially supported by the National Science Foundation [Award #s: CNS 1917537 and SES 1912898] and the School of Data Science at UNC Charlotte. Any opinions, findings, and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the above funding agency.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, L., Tao, J., Lai, E., Zhang, D. (2022). Do Fake News Between Different Languages Talk Alike? A Case Study of COVID-19 Related Fake News. In: Krishnan, R., Rao, H.R., Sahay, S.K., Samtani, S., Zhao, Z. (eds) Secure Knowledge Management In The Artificial Intelligence Era. SKM 2021. Communications in Computer and Information Science, vol 1549. Springer, Cham. https://doi.org/10.1007/978-3-030-97532-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-97532-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97531-9
Online ISBN: 978-3-030-97532-6
eBook Packages: Computer ScienceComputer Science (R0)