iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-96057-5_2
Security Threats in Cloud Rooted from Machine Learning-Based Resource Provisioning Systems | SpringerLink
Skip to main content

Security Threats in Cloud Rooted from Machine Learning-Based Resource Provisioning Systems

  • Conference paper
  • First Online:
Silicon Valley Cybersecurity Conference (SVCC 2021)

Abstract

Resources provisioning on the cloud is problematic due to heterogeneous resources and diverse applications. The complexity of such tasks can be reduced with the aid of Machine Learning. Researchers have found, however, that machine learning poses new threats such as adversarial attacks. Based on our investigation, we found that adversarial ML can target resource provisioning systems (RPS) to perform distributed attacks. Our work proposes a fake trace generator (FTG), which can be wrapped around an adversary kernel to avoid detection by the RPS and to enable the adversary to get co-located with the victim’s virtual machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 22.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazm, M.-M., Lacoste, M., Südholt, M., Menaud, J.-M.: Isolation in cloud computing infrastructures: new security challenges. Ann. Telecommun., 197–209 (2019). https://doi.org/10.1007/s12243-019-00703-z

  2. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-channel attacks using hardware performance counters. Appl. Soft Comput. 49, 1162–1174 (2016)

    Article  Google Scholar 

  3. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster management. In: ACM SIGARCH Computer Architecture News, vol. 42, pp. 127–144. ACM (2014)

    Google Scholar 

  4. Dinakarrao, S.M.P., et al.: Adversarial attack on microarchitectural events based malware detectors. In: DAC (2019)

    Google Scholar 

  5. Goodfellow, I.J., et al.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  6. Gupta, S., Kumar, P.: VM profile based optimized network attack pattern detection scheme for DDOS attacks in cloud. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez, G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 255–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40576-1_25

    Chapter  Google Scholar 

  7. İnci, M.S., Gulmezoglu, B., Eisenbarth, T., Sunar, B.: Co-location detection on the cloud. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43283-0_2

    Chapter  Google Scholar 

  8. Khasawneh, K.N., et al.: RHMD: evasion-resilient hardware malware detectors. In: MICRO (2017)

    Google Scholar 

  9. Liu, F., Ren, L., Bai, H.: Mitigating cross-VM side channel attack on multiple tenants cloud platform. JCP 9(4), 1005–1013 (2014)

    Google Scholar 

  10. Makrani, H.M., et al.: Adaptive performance modeling of data-intensive workloads for resource provisioning in virtualized environment. ACM Trans. Model. Perform. Eval. Comput. Syst. (TOMPECS) 5(4), 1–24 (2021)

    Article  Google Scholar 

  11. Makrani, H.M., Sayadi, H., Motwani, D., Wang, H., Rafatirad, S., Homayoun, H.: Energy-aware and machine learning-based resource provisioning of in-memory analytics on cloud. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 517–517 (2018)

    Google Scholar 

  12. Makrani, H.M., et al.: Cloak & co-locate: adversarial railroading of resource sharing-based attacks on the cloud. In: 2021 IEEE International Symposium on Secure and Private Execution Environment Design (SEED). IEEE (2021)

    Google Scholar 

  13. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware performance counters. In: Proceedings of the Department of Defense HPCMP Users Group Conference, vol. 710 (1999)

    Google Scholar 

  14. Payer, M.: HexPADS: a platform to detect “Stealth’’ attacks. In: Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_9

    Chapter  Google Scholar 

  15. Sayadi, H., et al.: Towards accurate run-time hardware-assisted stealthy malware detection: a lightweight, yet effective time series CNN-based approach. Cryptography 5(4), 28 (2021)

    Article  Google Scholar 

  16. Sayadi, H., et al.: Recent advancements in microarchitectural security: review of machine learning countermeasures. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 949–952. IEEE (2020)

    Google Scholar 

  17. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-freeing attacks: improve your cloud performance (at your neighbor’s expense). In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 281–292. ACM (2012)

    Google Scholar 

  18. Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., Mohsenin, T., Homayoun, H.: Comprehensive evaluation of machine learning countermeasures for detecting microarchitectural side-channel attacks. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 181–186 (2020)

    Google Scholar 

  19. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the cloud. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 929–944 (2015)

    Google Scholar 

  20. Yadwadkar, N., et al.: Selecting the best VM across multiple public clouds: a data-driven performance modeling approach. In: ACM SoCC (2017)

    Google Scholar 

  21. Zhang, W., et al.: A comprehensive study of co-residence threat in multi-tenant public PaaS clouds. In: Lam, K.-Y., Chi, C.-H., Qing, S. (eds.) ICICS 2016. LNCS, vol. 9977, pp. 361–375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50011-9_28

    Chapter  Google Scholar 

  22. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and their use to extract private keys. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 305–316. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Mohammadi Makrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makrani, H.M., Sayadi, H., Nazari, N., Homayoun, H. (2022). Security Threats in Cloud Rooted from Machine Learning-Based Resource Provisioning Systems. In: Chang, SY., Bathen, L., Di Troia, F., Austin, T.H., Nelson, A.J. (eds) Silicon Valley Cybersecurity Conference. SVCC 2021. Communications in Computer and Information Science, vol 1536. Springer, Cham. https://doi.org/10.1007/978-3-030-96057-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96057-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96056-8

  • Online ISBN: 978-3-030-96057-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics