Abstract
Due to rapid changes in industrial production, more and more companies introduce elements of Industry 4.0. Augmented Reality (AR) as an emerging technology is a crucial component in this field. AR can be applied in different areas of the product life cycle and manufacturing processes alike.
Consequently, AR-technologies and their industrial application have to be integrated into the curriculum of Higher Vocational Education because graduates are the workforce of tomorrow.
In the meantime, AR-technologies have been rolled out in selected departments of Higher Vocational Colleges in Austria. Prior to this rollout, a seminar series for teachers was developed to provide in-depth knowledge and training materials.
The central aim of this study is to explore the perception of the students regarding AR-education. Based on hypotheses, a questionnaire was developed to collect empirical data analyzed with statistical methods. Overall, 172 students took part in this survey.
The results show that students generally like AR as part of their vocational education. In some aspects, the analysis revealed differences between students from different departments. Students are also interested in writing their diploma thesis in this field. Based on the results, a further investigation of the differences between departments is required. The insights can further be used to adapt and optimize the contents and teaching material for teachers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Obermaier, R. (ed.): Industrie 4.0 als Unternehmerische Gestaltungsaufgabe. Springer, Wiesbaden (2016). https://doi.org/10.1007/978-3-658-08165-2
Masood, T., Egger, J.: Adopting augmented reality in the age of industrial digitalisation. Comput. Ind. (2020). https://doi.org/10.1016/j.compind.2019.07.002
Büchi, G., Cugno, M., Castagnoli, R.: Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Change 150, 119790 (2020). https://doi.org/10.1016/j.techfore.2019.119790
Osterrieder, P., Budde, L., Friedli, T.: The smart factory as a key construct of industry 4.0: a systematic literature review. Int. J. Product. Econ. 221, 107476 (2020). https://doi.org/10.1016/j.ijpe.2019.08.011
Agati, S.S., Bauer, R.D., Da Hounsell, M.S., Paterno, A.S.: Augmented reality for manual assembly in Industry 4.0: gathering guidelines. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil, 07 November 2020 to 10 November 2020, pp. 179–188. IEEE (2020). https://doi.org/10.1109/SVR51698.2020.00039
Damiani, L., Demartini, M., Guizzi, G., Revetria, R., Tonelli, F.: Augmented and virtual reality applications in industrial systems: a qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 51(11), 624–630 (2018). https://doi.org/10.1016/j.ifacol.2018.08.388
Egger, J., Masood, T.: Augmented reality in support of intelligent manufacturing – a systematic literature review. Comput. Ind. Eng. (2020). https://doi.org/10.1016/j.cie.2019.106195
de Pace, F., Manuri, F., Sanna, A., Fornaro, C.: A systematic review of augmented reality interfaces for collaborative industrial robots. Comput. Ind. Eng. (2020). https://doi.org/10.1016/j.cie.2020.106806
Rejeb, A., Keogh, J.G., Wamba, S.F., Treiblmaier, H.: The potentials of augmented reality in supply chain management: a state-of-the-art review. Manag. Rev. Quart. 71(4), 819–856 (2020). https://doi.org/10.1007/s11301-020-00201-w
Hess, T., Matt, C., Benlian, A., Wiesböck, F.: Options for Formulating a Digital Transformation Strategy (2016)
Kagermann, H., et al.: Smart Service Welt: Recommendations for the Strategic Initiative Web-based Services for Businesses. Final Report (2015). https://www.eitdigital.eu/fileadmin/files/2015/publications/acatech_report_SmartServiceWelt2015_full_en.pdf
Del Fernández Amo, I., Erkoyuncu, J.A., Roy, R., Palmarini, R., Onoufriou, D.: A systematic review of augmented reality content-related techniques for knowledge transfer in maintenance applications. Comput. Ind. 103, 47–71 (2018)
Martin-Gutierrez, J.: Editorial: learning strategies in engineering education using virtual and augmented reality technologies. Eurasia J. Math. Sci. T. 13(2), 13058223 (2017)
Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Proceedings of SPIE - The International Society for Optical Engineering (1994). https://doi.org/10.1117/12.197321
Porter, M.E., Heppelmann, J.E.: Why every organization needs an augmented reality strategy. 2017, 00178012 (2017)
Kaur, D.P., Mantri, A., Horan, B.: Enhancing student motivation with use of augmented reality for interactive learning in engineering education. Procedia Comput. Sci. 172, 881–885 (2020). https://doi.org/10.1016/j.procs.2020.05.127
Martín-Gutiérrez, J., Contero, M.: Improving academic performance and motivation in engineering education with augmented reality. In: Stephanidis, C. (ed.) HCI 2011. CCIS, vol. 174, pp. 509–513. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22095-1_102
Wang, P., Peng, W., Wang, J., Chi, H.-L., Wang, X.: A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Publ. Health 15(6), 1204 (2018)
Sahin, C., et al.: Wireless communications engineering education via augmented reality. In: Proceedings - Frontiers in Education Conference, FIE (2016). https://doi.org/10.1109/FIE.2016.7757366
Molina-Carmona, R., Pertegal-Felices, M.L., Jimeno-Morenilla, A., Mora-Mora, H.: Assessing the impact of virtual reality on engineering students’ spatial ability. In: Visvizi, A., Lytras, M.D., Daniela, L. (eds.) The Future of Innovation and Technology in Education. Policies and Practices for Teaching and Learning Excellence. Emerald Studies in Higher Education, Innovation and Technology Series, pp. 171–185. Emerald Publishing Limited, Bingley (2018)
Behzadan, A.H., Kamat, V.R.: A framework for utilizing context-aware augmented reality visualization in engineering education. In: International Conference on Construction Application of Virtual Reality (2012)
Arulanand, N., Babu, A.R., Rajesh, P.K.: Enriched learning experience using augmented reality framework in engineering education. Procedia Comput. Sci. (2020). https://doi.org/10.1016/j.procs.2020.05.135
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bernsteiner, R., Probst, A., Pachatz, W., Ploder, C., Dilger, T. (2022). Augmented Reality in Engineering Education in Austrian Higher Vocational Education from the Students’ Perspective. In: Auer, M.E., Hortsch, H., Michler, O., Köhler, T. (eds) Mobility for Smart Cities and Regional Development - Challenges for Higher Education. ICL 2021. Lecture Notes in Networks and Systems, vol 389. Springer, Cham. https://doi.org/10.1007/978-3-030-93904-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-93904-5_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93903-8
Online ISBN: 978-3-030-93904-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)