iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-93722-5_28
Right Ventricular Segmentation from Short- and Long-Axis MRIs via Information Transition | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13131))

Abstract

Right ventricular (RV) segmentation from magnetic resonance imaging (MRI) is a crucial step for cardiac morphology and function analysis. However, automatic RV segmentation from MRI is still challenging, mainly due to the heterogeneous intensity, the complex variable shapes, and the unclear RV boundary. Moreover, current methods for the RV segmentation tend to suffer from performance degradation at the basal and apical slices of MRI. In this work, we propose an automatic RV segmentation framework, where the information from long-axis (LA) views is utilized to assist the segmentation of short-axis (SA) views via information transition. Specifically, we employed the transformed segmentation from LA views as a prior information, to extract the ROI from SA views for better segmentation. The information transition aims to remove the surrounding ambiguous regions in the SA views. We tested our model on a public dataset with 360 multi-center, multi-vendor and multi-disease subjects that consist of both LA and SA MRIs. Our experimental results show that including LA views can be effective to improve the accuracy of the SA segmentation. Our model is publicly available at https://github.com/NanYoMy/MMs-2.

L. Li and W. Ding—The two authors have equal contributions to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammari, A., Mahmoudi, R., Hmida, B., Saouli, R., Bedoui, M.H.: A review of approaches investigated for right ventricular segmentation using short-axis cardiac MRI. IET Image Process. 15 (2021)

    Google Scholar 

  2. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  3. Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58

    Chapter  Google Scholar 

  4. Chen, J., Zhang, H., Zhang, W., Du, X., Zhang, Y., Li, S.: Correlated regression feature learning for automated right ventricle segmentation. IEEE J. Transl. Eng. Health Med. 6, 1–10 (2018)

    Google Scholar 

  5. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  6. Kevil, C.G., Goeders, N.E., Woolard, M., Bhuiyan, M.S., Orr, A.W.: Methamphetamine use and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39(9), 1739–1746 (2019)

    Article  Google Scholar 

  7. Koikkalainen, J., Pollari, M., Lötjönen, J., Kivistö, S., Lauerma, K.: Segmentation of cardiac structures simultaneously from short- and long-axis MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 427–434. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30135-6_52

    Chapter  Google Scholar 

  8. Li, J., Yu, Z.L., Gu, Z., Liu, H., Li, Y.: Dilated-inception net: multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Trans. Biomed. Eng. 66(12), 3499–3508 (2019)

    Article  Google Scholar 

  9. Luo, G., An, R., Wang, K., Dong, S., Zhang, H.: A deep learning network for right ventricle segmentation in short-axis MRI. In: 2016 Computing in Cardiology Conference (CinC), pp. 485–488. IEEE (2016)

    Google Scholar 

  10. Martín-Isla, C., Lekadir, K.: MICCAI 2021: multi-disease, multi-view & multi-center right ventricular segmentation in cardiac MRI (2021). https://www.ub.edu/mnms-2/

  11. Oghli, M.G., Mohammadzadeh, A., Kafieh, R., Kermani, S.: A hybrid graph-based approach for right ventricle segmentation in cardiac MRI by long axis information transition. Physica Med. 54, 103–116 (2018)

    Article  Google Scholar 

  12. Petitjean, C., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)

    Article  Google Scholar 

  13. Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Omega-Net: fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018)

    Article  Google Scholar 

  14. Yue, Q., Luo, X., Ye, Q., Xu, L., Zhuang, X.: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_62

    Chapter  Google Scholar 

  15. Zhuang, X.: Challenges and methodologies of fully automatic whole heart segmentation: a review. J. Healthcare Eng. 4(3), 371–407 (2013)

    Article  Google Scholar 

  16. Zhuang, X., Xu, J., Luo, X., Chen, C., Ouyang, C., Rueckert, D., Campello, V.M., Lekadir, K., Vesal, S., RaviKumar, N., et al.: Cardiac segmentation on late gadolinium enhancement mri: a benchmark study from multi-sequence cardiac MR segmentation challenge. arXiv preprint arXiv:2006.12434 (2020)

Download references

Acknowledgement

This work was funded by the National Natural Science Foundation of China (grant no. 61971142, 62111530195 and 62011540404) and the development fund for Shanghai talents (no. 2020015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiahai Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Ding, W., Huang, L., Zhuang, X. (2022). Right Ventricular Segmentation from Short- and Long-Axis MRIs via Information Transition. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93722-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93721-8

  • Online ISBN: 978-3-030-93722-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics