Abstract
Right ventricular (RV) segmentation from magnetic resonance imaging (MRI) is a crucial step for cardiac morphology and function analysis. However, automatic RV segmentation from MRI is still challenging, mainly due to the heterogeneous intensity, the complex variable shapes, and the unclear RV boundary. Moreover, current methods for the RV segmentation tend to suffer from performance degradation at the basal and apical slices of MRI. In this work, we propose an automatic RV segmentation framework, where the information from long-axis (LA) views is utilized to assist the segmentation of short-axis (SA) views via information transition. Specifically, we employed the transformed segmentation from LA views as a prior information, to extract the ROI from SA views for better segmentation. The information transition aims to remove the surrounding ambiguous regions in the SA views. We tested our model on a public dataset with 360 multi-center, multi-vendor and multi-disease subjects that consist of both LA and SA MRIs. Our experimental results show that including LA views can be effective to improve the accuracy of the SA segmentation. Our model is publicly available at https://github.com/NanYoMy/MMs-2.
L. Li and W. Ding—The two authors have equal contributions to the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ammari, A., Mahmoudi, R., Hmida, B., Saouli, R., Bedoui, M.H.: A review of approaches investigated for right ventricular segmentation using short-axis cardiac MRI. IET Image Process. 15 (2021)
Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)
Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58
Chen, J., Zhang, H., Zhang, W., Du, X., Zhang, Y., Li, S.: Correlated regression feature learning for automated right ventricle segmentation. IEEE J. Transl. Eng. Health Med. 6, 1–10 (2018)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Kevil, C.G., Goeders, N.E., Woolard, M., Bhuiyan, M.S., Orr, A.W.: Methamphetamine use and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39(9), 1739–1746 (2019)
Koikkalainen, J., Pollari, M., Lötjönen, J., Kivistö, S., Lauerma, K.: Segmentation of cardiac structures simultaneously from short- and long-axis MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 427–434. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30135-6_52
Li, J., Yu, Z.L., Gu, Z., Liu, H., Li, Y.: Dilated-inception net: multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Trans. Biomed. Eng. 66(12), 3499–3508 (2019)
Luo, G., An, R., Wang, K., Dong, S., Zhang, H.: A deep learning network for right ventricle segmentation in short-axis MRI. In: 2016 Computing in Cardiology Conference (CinC), pp. 485–488. IEEE (2016)
MartÃn-Isla, C., Lekadir, K.: MICCAI 2021: multi-disease, multi-view & multi-center right ventricular segmentation in cardiac MRI (2021). https://www.ub.edu/mnms-2/
Oghli, M.G., Mohammadzadeh, A., Kafieh, R., Kermani, S.: A hybrid graph-based approach for right ventricle segmentation in cardiac MRI by long axis information transition. Physica Med. 54, 103–116 (2018)
Petitjean, C., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)
Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Omega-Net: fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal. 48, 95–106 (2018)
Yue, Q., Luo, X., Ye, Q., Xu, L., Zhuang, X.: Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_62
Zhuang, X.: Challenges and methodologies of fully automatic whole heart segmentation: a review. J. Healthcare Eng. 4(3), 371–407 (2013)
Zhuang, X., Xu, J., Luo, X., Chen, C., Ouyang, C., Rueckert, D., Campello, V.M., Lekadir, K., Vesal, S., RaviKumar, N., et al.: Cardiac segmentation on late gadolinium enhancement mri: a benchmark study from multi-sequence cardiac MR segmentation challenge. arXiv preprint arXiv:2006.12434 (2020)
Acknowledgement
This work was funded by the National Natural Science Foundation of China (grant no. 61971142, 62111530195 and 62011540404) and the development fund for Shanghai talents (no. 2020015).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, L., Ding, W., Huang, L., Zhuang, X. (2022). Right Ventricular Segmentation from Short- and Long-Axis MRIs via Information Transition. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-93722-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93721-8
Online ISBN: 978-3-030-93722-5
eBook Packages: Computer ScienceComputer Science (R0)