iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-92931-2_26
Embedding Ray Intersection Graphs and Global Curve Simplification | SpringerLink
Skip to main content

Embedding Ray Intersection Graphs and Global Curve Simplification

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2021)

Abstract

We prove that circle graphs (intersection graphs of circle chords) can be embedded as intersection graphs of rays in the plane with polynomial-size bit complexity.

We use this embedding to show that the global curve simplification problem for the directed Hausdorff distance is NP-hard. In this problem, we are given a polygonal curve \(P\) and the goal is to find a second polygonal curve \(P'\) such that the directed Hausdorff distance from \(P'\) to \(P\) is at most a given constant, and the complexity of \(P'\) is as small as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A suitable polyline could also end with \(s_h\), but we will define the polyline to be in this direction for ease of notation.

References

  1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for line simplification. Discret. Comput. Geom. 43(3), 497–515 (2010)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.: Near linear time approximation algorithm for curve simplification. Algorithmica 42(3–4), 203–219 (2005)

    Article  MathSciNet  Google Scholar 

  3. Barequet, G., Chen, D.Z., Daescu, O., Goodrich, M.T., Snoeyink, J.: Efficiently approximating polygonal paths in three and higher dimensions. Algorithmica 33(2), 150–167 (2002)

    Article  MathSciNet  Google Scholar 

  4. de Berg, M., van Kreveld, M., Schirra, S.: Topologically correct subdivision simplification using the bandwidth criterion. Cartogr. Geogr. Inf. Syst. 25(4), 243–257 (1998)

    Google Scholar 

  5. Buzer, L.: Optimal simplification of polygonal chain for rendering. In: Proceedings of 23rd Annual ACM Symposium on Computational Geometry (SoCG), pp. 168–174 (2007)

    Google Scholar 

  6. Cabello, S., Jejčič, M.: Refining the hierarchies of classes of geometric intersection graphs. Electron. J. Combin. 24(1), 1–33 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cardinal, J., Felsner, S., Miltzow, T., Tompkins, C., Vogtenhuber, B.: Intersection graphs of rays and grounded segments. J. Graph Algorithms Appl. 22(2), 273–295 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chalopin, J., Gonçalves, D., Ochem, P.: Planar graphs are in 1-string. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 609–617 (2007)

    Google Scholar 

  9. Chan, S., Chin, F.: Approximation of polygonal curves with minimum number of line segments or minimum error. Int. J. Comput. Geom. Appl. 6(1), 59–77 (1996)

    Article  MathSciNet  Google Scholar 

  10. Chen, D.Z., Daescu, O., Hershberger, J., Kogge, P.M., Mi, N., Snoeyink, J.: Polygonal path simplification with angle constraints. Comput. Geom. 32(3), 173–187 (2005)

    Article  MathSciNet  Google Scholar 

  11. Damaschke, P.: The Hamiltonian circuit problem for circle graphs is NP-complete. Inf. Process. Lett. 32(1), 1–2 (1989)

    Article  MathSciNet  Google Scholar 

  12. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

    Article  Google Scholar 

  13. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J. Comb. Theory. Ser. B 21, 8–20 (1976)

    Article  MathSciNet  Google Scholar 

  14. Godau, M.: A natural metric for curves - computing the distance for polygonal chains and approximation algorithms. In: Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pp. 127–136 (1991)

    Google Scholar 

  15. Golumbic, M.C.: Algorithmic graph theory and perfect graphs (2004)

    Google Scholar 

  16. Hartman, I.A., Newman, I., Ziv, R.: On grid intersection graphs. Discret. Math. 87, 41–52 (1991)

    Article  MathSciNet  Google Scholar 

  17. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Inf. Process. 9(3), 159–162 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Imai, H., Iri, M.: Polygonal approximations of a curve - formulations and algorithms. In: Computational Morphology: A Computational Geometric Approach to the Analysis of Form (1988)

    Google Scholar 

  19. Jinjiang, Y., Sanming, Z.: Optimal labelling of unit interval graphs. Appl. Math. 10(3), 337–344 (1995)

    Article  MathSciNet  Google Scholar 

  20. van de Kerkhof, M., Kostitsyna, I., Löffler, M., Mirzanezhad, M., Wenk, C.: Global curve simplification. In: Proceedings of the 27th European Symposium on Algorithms (ESA) (2019)

    Google Scholar 

  21. van de Kerkhof, M., Kostitsyna, I., Löffler, M.: Embedding ray intersection graphs and global curve simplification (2021). https://arxiv.org/abs/2109.00042

  22. Kostitsyna, I., Löffler, M., Polishchuk, V., Staals, F.: On the complexity of minimum-link path problems. J. Comput. Geom. 8(2), 80–108 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory, Ser. B 62(2), 289–315 (1994)

    Article  MathSciNet  Google Scholar 

  24. van Kreveld, M., Löffler, M., Wiratma, L.: On optimal polyline simplification using the Hausdorff and Fréchet distance. In: Proceedings of the 34th International Symposium on Computational Geometry (SoCG), vol. 56, pp. 1–14 (2018)

    Google Scholar 

  25. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013)

    Article  MathSciNet  Google Scholar 

  26. McKee, T.A., McMorris, F.: Topics in Intersection Graph Theory. Society for Industrial and Applied Mathematics, USA (1999)

    Book  Google Scholar 

  27. Mustata, I.: On subclasses of grid intersection graphs. Doctoral thesis, Technische Universität Berlin, Berlin (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Birgit Vogtenhuber, Tillman Miltzow, and anonymous reviewers for valuable discussions and suggestions. Mees van de Kerkhof and Maarten Löffler are (partially) supported by the Dutch Research Council under grant 628.011.00. Maarten Löffler is supported by the Dutch Research Council under grant 614.001.50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mees van de Kerkhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van de Kerkhof, M., Kostitsyna, I., Löffler, M. (2021). Embedding Ray Intersection Graphs and Global Curve Simplification. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92931-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92930-5

  • Online ISBN: 978-3-030-92931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics