iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-90539-2_34
Fides: A General Purpose Data Model Library for Streaming Data | SpringerLink
Skip to main content

Fides: A General Purpose Data Model Library for Streaming Data

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2021)

Abstract

Data models are required to provide the semantics of the underlying data stream for in situ visualization. In this paper we describe a set of metrics for such a data model that are useful in meeting the needs of the scientific community for visualization. We then present Fides, a library that provides a schema for the VTK-m data model, and uses the ADIOS middleware library for access to streaming data. We present four use cases of Fides in different scientific workflows, and provide an evaluation of each use case against our metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cloverleaf3D. http://uk-mac.github.io/CloverLeaf3D/. Accessed 19 Dec 2018

  2. VTK-m users guide. https://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf. Accessed 17 June 2021

  3. Ayachit, U., et al.: ParaView catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp. 25–29. ACM (2015)

    Google Scholar 

  4. Ayachit, U., et al.: Performance analysis, design considerations, and applications of extreme-scale in situ infrastructures. In: ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC16), Salt Lake City, UT, USA, November 2016. https://doi.org/10.1109/SC.2016.78. lBNL-1007264

  5. Childs, H., Bennett, J., Garth, C., Hentschel, B.: In situ visualization for computational science. IEEE Comput. Graph. Appl. 39(6), 76–85 (2019)

    Article  Google Scholar 

  6. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very large data. In: Bethel, E.W., Childs, H., Hansen, C. (eds.) High Performance Visualization-Enabling Extreme-Scale Scientific Insight, pp. 357–372. Chapman & Hall, CRC Computational Science, CRC Press/Francis-Taylor Group, Boca Raton, November 2012. http://www.crcpress.com/product/isbn/9781439875728. LBNL-6320E

  7. Clarke, l.J., Mark, E.: Enhancements to the extensible data model and format (XDMF). In: 2007 DoD High Performance Computing Modernization Program Users Group Conference, pp. 322–327 (2007). https://doi.org/10.1109/HPCMP-UGC.2007.30

  8. De Melo, A.C.: The new Linux ‘perf’ tools. In: Slides from Linux Kongress, vol. 18, pp. 1–42 (2010)

    Google Scholar 

  9. Godoy, W., et al.: Adios 2: The adaptable input output system. a framework for high-performance data management. SoftwareX 12, 100561 (2020). https://doi.org/10.1016/j.softx.2020.100561

  10. Huebl, A., et al.: openPMD: a meta data standard for particle and mesh based data (2015). https://doi.org/10.5281/zenodo.591699

  11. Klasky, S., et al.: A view from ORNL: scientific data research opportunities in the big data age. In: 38th IEEE International Conference on Distributed Computing Systems, ICDCS 2018, Vienna, Austria, 2–6 July 2018, pp. 1357–1368. IEEE Computer Society (2018). https://doi.org/10.1109/ICDCS.2018.00136

  12. Ku, S., et al.: A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25(5), 056107 (2018). https://doi.org/10.1063/1.5020792

  13. Larsen, M., et al.: The ALPINE in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, pp. 42–46. ACM (2017)

    Google Scholar 

  14. Lawrence Livermore National Laboratory: Blueprint. https://llnl-conduit.readthedocs.io/en/latest/index.html. Accessed 18 June 2020

  15. Lawrence Livermore National Laboratory: Conduit. https://llnl-conduit.readthedocs.io/en/latest/blueprint.html. Accessed 9 June 2020

  16. Mallinson, A., et al.: CloverLeaf: preparing hydrodynamics codes for exascale. The Cray User Group 2013 (2013)

    Google Scholar 

  17. Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: the extreme-scale analysis and visualization library. In: Childs, H., Kuhlen, T., Marton, F. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2012). https://doi.org/10.2312/EGPGV/EGPGV12/021-030

  18. Moreland, K., Ayachit, U., Geveci, B., Ma, K.: Dax toolkit: a proposed framework for data analysis and visualization at extreme scale. In: Rogers, D.H., Silva, C.T. (eds.) IEEE Symposium on Large Data Analysis and Visualization, LDAV 2011, Providence, Rhode Island, USA, 23–24 October 2011, pp. 97–104. IEEE Computer Society (2011). https://doi.org/10.1109/LDAV.2011.6092323

  19. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016). https://doi.org/10.1109/MCG.2016.48

  20. ORNL: Grey-Scott simulation code (2018). https://github.com/suchyta1/adiosvm/blob/cpp/Tutorial/gray-scott/simulation/gray-scott.cpp. Accessed 9 Apr 2021

  21. Pugmire, D., et al.: Visualization as a service for scientific data. In: Nichols, J., Verastegui, B., Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) SMC 2020. CCIS, vol. 1315, pp. 157–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63393-6_11

    Chapter  Google Scholar 

  22. Schroeder, W.J., Lorensen, B., Martin, K.: The visualization toolkit: an object-oriented approach to 3D graphics. Kitware (2004)

    Google Scholar 

  23. Tchoua, R., et al.: Adios visualization schema: a first step towards improving interdisciplinary collaboration in high performance computing. In: 2013 IEEE 9th International Conference on e-Science, pp. 27–34 (2013). https://doi.org/10.1109/eScience.2013.24

  24. Vazhkudai, S.S., et al.: The design, deployment, and evaluation of the coral pre-exascale systems. In: SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 661–672 (2018)

    Google Scholar 

  25. Wang, B., et al.: Kinetic turbulence simulations at extreme scale on leadership-class systems. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2013)

    Google Scholar 

  26. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Kuhlen, T., et al. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2011). https://doi.org/10.2312/EGPGV/EGPGV11/101-109

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-SC0018054 and the Scientific Discovery through Advanced Computing (SciDAC) program in U.S. Department of Energy. This work also used resources of the Oak Ridge Leadership Computing Facility, which is a U.S. Department of Energy, Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pugmire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pugmire, D. et al. (2021). Fides: A General Purpose Data Model Library for Streaming Data. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(), vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90539-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90538-5

  • Online ISBN: 978-3-030-90539-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics