iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-89137-4_4
Mining Trojan Detection Based on Multi-dimensional Static Features | SpringerLink
Skip to main content

Mining Trojan Detection Based on Multi-dimensional Static Features

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13005))

Included in the following conference series:

Abstract

The developing technic and the variety of Mining Trojan is increasingly threatening the computational resources from the weak-defend systems. Mining Trojan is illicitly implanted into the systems and mines cryptocurrency such as Bitcon through the hijacked resource. Previous work focuses on performing binary classification to identify a malicious software from the benign ones, but fail to classify the specific Mining Trojan. In order to tackle the above issues, in this paper, we propose a hierarchical detector, called Miner-Killer, to effectively and precisely classify Mining Trojans apart from the benign ones. First, Miner-Killer converts binary codes from Trojan samples to format files, assembly files and string files. Second, the static features are extracted by MSFV Extractor. Then, an ensemble learning model is trained by the extracted features and is applied to classify the unseen Mining Trojans. Experiments on two real-world datasets demonstrate that our proposed method can significantly detect the Mining Trojans, which outperforms the state-of-the-art methods applied to detect malware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.virustotal.com/gui/

  2. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detection using dynamic analysis. J. Comput. Virol. 7(4), 247–258 (2011)

    Article  Google Scholar 

  3. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the static/dynamic gap. In: Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence, pp. 3–14 (2012)

    Google Scholar 

  4. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74320-0_10

    Chapter  Google Scholar 

  5. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–38 (2015)

    Article  Google Scholar 

  6. Carlin, D., Burgess, J., O’Kane, P., Sezer, S.: You could be mine (d): the rise of cryptojacking. IEEE Secur. Priv. 18(2), 16–22 (2019)

    Article  Google Scholar 

  7. Cesare, S., Xiang, Y., Zhou, W.: Control flow-based malware variantdetection. IEEE Trans. Dependable Secure Comput. 11(4), 307–317 (2013)

    Article  Google Scholar 

  8. David, B., Filiol, E., Gallienne, K.: Structural analysis of binary executable headers for malware detection optimization. J. Comput. Virol. Hacking Tech. 13(2), 87–93 (2016). https://doi.org/10.1007/s11416-016-0274-2

    Article  Google Scholar 

  9. Eskandari, S., Leoutsarakos, A., Mursch, T., Clark, J.: A first look at browser-based cryptojacking. In: 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 58–66. IEEE (2018)

    Google Scholar 

  10. Grinberg, R.: Bitcoin: an innovative alternative digital currency. Hastings Sci. Tech. LJ 4, 159 (2012)

    Google Scholar 

  11. Hong, G., et al.: How you get shot in the back: a systematical study about cryptojacking in the real world. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1701–1713 (2018)

    Google Scholar 

  12. Idika, N., Mathur, A.P.: A survey of malware detection techniques. Purdue University 48, 2007–2 (2007)

    Google Scholar 

  13. Jordaney, R., et al.: Transcend: detecting concept drift in malware classification models. In: 26th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 2017), pp. 625–642 (2017)

    Google Scholar 

  14. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

    Chapter  Google Scholar 

  15. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7(Dec), 2721–2744 (2006)

    Google Scholar 

  16. Lo, R.W., Levitt, K.N., Olsson, R.A.: MCF: a malicious code filter. Comput. Secur. 14(6), 541–566 (1995)

    Article  Google Scholar 

  17. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.: Mamadroid: detecting android malware by building Markov chains of behavioral models. arXiv preprint arXiv:1612.04433 (2016)

  18. Microsoft 365 Defender Threat Intelligence Team: Threat actor leverages coin miner techniques to stay under the radar - here’s how to spot them (2020). https://www.microsoft.com/security/blog/2020/11/30/

  19. QiAnXin Technology Research Institute: Datacon 2020-malware (2020). https://datacon.qianxin.com/opendata/maliciouscode

  20. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.: Malware detection by eating a whole EXE. In: The Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2–7 February 2018. AAAI Workshops, vol. WS-18, pp. 268–276. AAAI Press (2018)

    Google Scholar 

  21. Raff, E., Nicholas, C.: An alternative to NCD for large sequences, Lempel-Ziv Jaccard distance. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1007–1015 (2017)

    Google Scholar 

  22. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

    Article  Google Scholar 

  23. Rodriguez, J.D.P., Posegga, J.: Rapid: resource and API-based detection against in-browser miners. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 313–326 (2018)

    Google Scholar 

  24. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G.: OPEM: a static-dynamic approach for machine-learning-based malware detection. In: Herrero, A., et al. (eds.) International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pp. 271–280. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33018-6_28

    Chapter  Google Scholar 

  25. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-miner: mining structural information to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 121–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04342-0_7

    Chapter  Google Scholar 

  26. Tencent Security Threat Intelligence Center: 2019 annual mining trojan report (2020). https://s.tencent.com/research/report/887.html

  27. Zareh, A., Shahriari, H.R.: Botcointrap: detection of bitcoin miner botnet using host based approach. In: 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), pp. 1–6. IEEE (2018)

    Google Scholar 

  28. Zhang, J., Qin, Z., Yin, H., Ou, L., Xiao, S., Hu, Y.: Malware variant detection using opcode image recognition with small training sets. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China with No. 2018YFC0806900 and No. 2018YFB0805004, Beijing Municipal Science & Technology Commission with Project No. Z191100007119009, NSFC No.61902397, NSFC No. U2003111 and NSFC No. 61871378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Wang, Q., Li, W., Bao, H., Liu, F., Wang, W. (2021). Mining Trojan Detection Based on Multi-dimensional Static Features. In: Lu, W., Sun, K., Yung, M., Liu, F. (eds) Science of Cyber Security. SciSec 2021. Lecture Notes in Computer Science(), vol 13005. Springer, Cham. https://doi.org/10.1007/978-3-030-89137-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89137-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89136-7

  • Online ISBN: 978-3-030-89137-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics