Abstract
In this paper, we develop a terrain attribute recognition system for CPG-based legged robots. First, a low-cost sensing hardware device is designed to be integrated into the robot, including a tactile sensor array and RGB camera. Second, for the tactile modality, a novel terrain attribute recognition framework is proposed. A data generation strategy that adapts to the motion characteristics is presented, which transforms the original tactile signal into a structured representation, and extract meaningful features. Based on unsupervised and supervised machine learning classifiers, the recognition rates reach 94.0% and 95.5%, and the switching time is 1 to 3 steps. Third, for the recognition of terrain attributes in the visual modality, a lightweight real-time mobile attention coding network (MACNet) is proposed as an end-to-end model, which shows an exhibiting an accuracy of 88.5% on the improved GTOS mobile data set, 169FPS inference speed and 6.6 MB model parameter occupancy. Finally, these two methods are simultaneously applied to the AmphiHex-II robot for outdoor experiments. Experimental results show that each modality has its own advantages and disadvantages, and the complementary relationship between multiple modalities plays an irreplaceable role in a broader scene.
Video of this work: https://v.youku.com/v_show/id_XNTE3NTM0NjE1Mg==.html.
H. Chen and X. Zhu—contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belter, D., Wietrzykowski, J., Skrzypczyński, P.: Employing natural terrain semantics in motion planning for a multi-legged robot. J. Intell. Robot. Syst. 93(3), 723–743 (2019)
Bhattacharya, S., et al.: Surface-property recognition with force sensors for stable walking of humanoid robot. IEEE Access 7, 146443–146456 (2019)
Xue, J., Zhang, H., Dana, K.: Deep texture manifold for ground terrain recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2018)
Bednarek, J., Bednarek, M., Wellhausen, L., Hutter, M., Walas, K.: What am i touching? learning to classify terrain via haptic sensing. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7187–7193. IEEE (2019)
Wu, X.A., Huh, T.M., Sabin, A., Suresh, S.A., Cutkosky, M.R.: Tactile sensing and terrain-based gait control for small legged robots. IEEE Trans. Robot. 36(1), 15–27 (2019)
Wellhausen, L., Dosovitskiy, A., Ranftl, R., Walas, K., Cadena, C., Hutter, M.: Where should i walk? Predicting terrain properties from images via self-supervised learning. IEEE Robot. Autom. Lett. 4(2), 1509–1516 (2019)
Zhang, S., Zhou, Y., Xu, M., Liang, X., Liu, J., Yang, J.: Amphihex-i: locomotory performance in amphibious environments with specially designed transformable flipper legs. IEEE/ASME Trans. Mechatron. 21(3), 1720–1731 (2015)
Manjanna, S., Dudek, G.: Autonomous gait selection for energy efficient walking. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5155–5162. IEEE (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Zhong, B., Zhang, S., Xu, M., Zhou, Y., Fang, T., Li, W.: On a CPG-based hexapod robot: Amphihex-II with variable stiffness legs. IEEE/ASME Trans. Mechatron. 23(2), 542–551 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, H., Zhu, X., Zhu, S., Chen, H., Zhang, S., Lou, Y. (2021). Terrain Attribute Recognition System for CPG-Based Legged Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-89134-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89133-6
Online ISBN: 978-3-030-89134-3
eBook Packages: Computer ScienceComputer Science (R0)