iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-89029-2_26
ADD-Net:Attention U-Net with Dilated Skip Connection and Dense Connected Decoder for Retinal Vessel Segmentation | SpringerLink
Skip to main content

ADD-Net:Attention U-Net with Dilated Skip Connection and Dense Connected Decoder for Retinal Vessel Segmentation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13002))

Included in the following conference series:

  • 2131 Accesses

Abstract

Retinal vessel segmentation is an essential step in the diagnosis of many diseases. Due to the large number of capillaries and complex branch structure, efficient and accurate segmentation of fundus vessels faces a huge challenge. In this paper, we propose an improved U-shape network, aiming at the problem of complex vessel segmentation, especially those thin, obscure ones. Firstly, we propose a new attention module, including channel attention and spatial attention, to build the connection between channels and learn to focus on those crucial representations. Secondly, we improve the skip connection by adding dilated convolutions, which can not only coping with the problem of semantic gap between the low-dimension and high-dimension features but also extract rich context information in encoder. Finally, the idea of dense connection is adopted in the decoder to fuse the feature representations with low computation cost and parameters. Experimental results show that our method could efficiently obtain the accurate segmentation image and achieve state-of-the-art performance on the public datasets DRIVE and CHASE_DB1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  6. Cinsdikici, M.G., Aydın, D.: Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Program. Biomed. 96(2), 85–95 (2009). https://doi.org/10.1016/j.cmpb.2009.04.005

    Article  Google Scholar 

  7. Dash, J., Bhoi, N.: Retinal blood vessel extraction using morphological operators and Kirsch’s template. In: Wang, J., Reddy, G.R.M., Prasad, V.K., Reddy, V.S. (eds.) Soft Computing and Signal Processing. AISC, vol. 900, pp. 603–611. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3600-3_57

    Chapter  Google Scholar 

  8. Fraz, M.M., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int. J. Comput. Assist. Radiol. Surg. 9(5), 795–811 (2013). https://doi.org/10.1007/s11548-013-0965-9

    Article  Google Scholar 

  9. Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks. arXiv preprint arXiv:1810.12890 (2018)

  10. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  13. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl. Based Sys. 178, 149–162 (2019)

    Article  Google Scholar 

  14. Kamran, S.A., Hossain, K.F., Tavakkoli, A., Zuckerbrod, S.L., Sanders, K.M., Baker, S.A.: RV-GAN: retinal vessel segmentation from fundus images using multi-scale generative adversarial networks (2021)

    Google Scholar 

  15. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3656–3665 (2020)

    Google Scholar 

  16. Liu, B., Gu, L., Lu, F.: Unsupervised ensemble strategy for retinal vessel segmentation. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 111–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_13

    Chapter  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Mapayi, T., Tapamo, J.R., Viriri, S.: Retinal vessel segmentation: a comparative study of fuzzy C-means and sum entropy information on phase congruency. Int. J. Adv. Rob. Syst. 12(9), 133 (2015)

    Article  Google Scholar 

  19. Moran, S., Leonardis, A., Mcdonagh, S., Slabaugh, G.: CURL: neural curve layers for global image enhancement (2019)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  22. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  23. Wang, W., Zhong, J., Wu, H., Wen, Z., Qin, J.: RVSeg-Net: an efficient feature pyramid cascade network for retinal vessel segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 796–805. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_77

    Chapter  Google Scholar 

  24. Yang, T., Wu, T., Li, L., Zhu, C.: SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J. Digit. Imaging 33, 946–957 (2020)

    Article  Google Scholar 

  25. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  26. Zhuang, J.: LadderNet: multi-path networks based on U-Net for medical image segmentation (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Shanghai Natural Science Foundation of China under Grant No.19ZR1419100 and the National Natural Science Foundation of China under Grant No.61402278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, D., Guo, H., Zhang, Y. (2021). ADD-Net:Attention U-Net with Dilated Skip Connection and Dense Connected Decoder for Retinal Vessel Segmentation. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics