iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-86137-7_58
A Deep Learning Based Intelligent Transceiver Structure for Multiuser MIMO | SpringerLink
Skip to main content

A Deep Learning Based Intelligent Transceiver Structure for Multiuser MIMO

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

  • 1779 Accesses

Abstract

Precoding and post-processing are necessary technical steps for information recovery of multiple-input multiple-output (MIMO) systems, which can effectively suppress interference between data streams and improve system capacity and resource utilization. However, it is not trivial to design the precoders for multiuser MIMO system and the complexity of the traditional precoding algorithms is usually very high. Deep learning sheds new light to overcome this challenge via data-driven solutions. In this paper, we study the intelligent information transmission technique for a multiuser MIMO broadcast channel network based on deep learning (DL). We propose a DL-based intelligent transceiver structure in this work. The proposed structure is composed of a DL network at the transmitter that played the role of precoder and a post-decoding DL network with a radio transformer network (RTN) at the receiver. Given the channel state information at the transmitter, the proposed intelligent transceiver is trained through the symbols drawn from a discrete constellation by decreasing the mean-squared error (MSE) loss. Simulation results show the proposed intelligent structure is capable of suppressing the inter-stream and inter-user interference adaptively through the training.

This work was supported in part by the National Key R&D Program of China under grant 2019YFB2102600, the National Natural Science Foundation of China (NSFC) under Grants 61701269, 61832012, 61771289 and 61672321, the Shandong Provincial Natural Science Foundation under Grant ZR2017BF012, the Key Research and Development Program of Shandong Province under Grants 2019JZZY010313 and 2019JZZY020124, the program for Youth Innovative Research Team in University of Shandong Province under grant 2019KJN010, the Pilot Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology (Shandong Academy of Sciences) under Grant 2020KJC-ZD02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Q., Cai, Z., Cheng, L., Gao, H.: Low-latency data aggregation scheduling for cognitive radio networks with non-predetermined structure. IEEE Trans. Mob. Comput. 20, 2412–2426 (2020)

    Article  Google Scholar 

  2. Cai, Z., Ji, S., He, J., Wei, L., Bourgeois, A.G.: Distributed and asynchronous data collection in cognitive radio networks with fairness consideration. IEEE Trans. Parallel Distrib. Syst. 25(8), 2020–2029 (2013)

    Article  Google Scholar 

  3. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal distributed data collection for asynchronous cognitive radio networks. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems, pp. 245–254. IEEE (2012)

    Google Scholar 

  4. Lu, J., Cai, Z., Wang, X., Zhang, L., Li, P., He, Z.: User social activity-based routing for cognitive radio networks. Pers. Ubiquit. Comput. 22(3), 471–487 (2018)

    Article  Google Scholar 

  5. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  6. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  7. Chen, S., Sun, S., Xu, G., Su, X., Cai, Y.: Beam-space multiplexing: practice, theory, and trends, from 4G TD-LTE, 5G, to 6G and beyond. IEEE Wirel. Commun. 27(2), 162–172 (2020)

    Article  Google Scholar 

  8. Dong, A., Zhang, H., Yuan, D., Zhou, X.: Interference alignment transceiver design by minimizing the maximum mean square error for MIMO interfering broadcast channel. IEEE Trans. Veh. Technol. 65(8), 6024–6037 (2015)

    Article  Google Scholar 

  9. Dong, A., Zhang, H., Wu, D., Yuan, D.: QoS-constrained transceiver design and power splitting for downlink multiuser MIMO SWIPT systems. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)

    Google Scholar 

  10. Zhao, N., et al.: Secure transmission via joint precoding optimization for downlink MISO NOMA. IEEE Trans. Veh. Technol. 68(8), 7603–7615 (2019)

    Article  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  13. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Netw. 32(4), 8–14 (2018)

    Article  Google Scholar 

  14. O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3(4), 563–575 (2017)

    Article  Google Scholar 

  15. Liu, Z., Zhang, L., Ding, Z.: An efficient deep learning framework for low rate massive MIMO CSI reporting. IEEE Trans. Commun. 68, 4761–4772 (2020)

    Article  Google Scholar 

  16. Ma, X., Gao, Z.: Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Trans. Veh. Technol. 69(5), 5677–5682 (2020)

    Article  Google Scholar 

  17. Kim, H., Kim, S., Lee, H., Jang, C., Choi, Y., Choi, J.: Massive MIMO channel prediction: Kalman filtering vs. machine learning. IEEE Trans. Commun. 69, 518–528 (2020)

    Article  Google Scholar 

  18. Shao, M., Ma, W.-K.: Binary MIMO detection via homotopy optimization and its deep adaptation. arXiv preprint arXiv:2004.12587 (2020)

  19. Zhang, J., Dong, A., Yu, J.: Intelligent dynamic spectrum access for uplink underlay cognitive radio networks based on q-learning. In: Yu, D., Dressler, F., Yu, J. (eds.) WASA 2020. LNCS, vol. 12384, pp. 691–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59016-1_57

    Chapter  Google Scholar 

  20. O’Shea, T.J., Erpek, T., Clancy, T.C.: Deep learning based MIMO communications. arXiv preprint arXiv:1707.07980 (2017)

  21. He, H., Jin, S., Wen, C.-K., Gao, F., Li, G.Y., Xu, Z.: Model-driven deep learning for physical layer communications. IEEE Wirel. Commun. 26(5), 77–83 (2019)

    Article  Google Scholar 

  22. Song, J., Häger, C., Schröder, J., O’Shea, T., Wymeersch, H.: Benchmarking end-to-end learning of MIMO physical-layer communication. arXiv preprint arXiv:2005.09718 (2020)

  23. O’Shea, T.J., Pemula, L., Batra, D., Clancy, T.C.: Radio transformer networks: Attention models for learning to synchronize in wireless systems. In: 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 662–666. IEEE (2016)

    Google Scholar 

  24. Zhang, H., Dong, A., Jin, S., Yuan, D.: Joint transceiver and power splitting optimization for multiuser MIMO SWIPT under MSE QoS constraints. IEEE Trans. Veh. Technol. 66(8), 7123–7135 (2017)

    Article  Google Scholar 

  25. Cui, W., Dong, A., Cao, Y., Zhang, C., Yu, J., Li, S.: Deep learning based MIMO transmission with precoding and radio transformer networks. Procedia Comput. Sci. 187, 396–401 (2021)

    Article  Google Scholar 

  26. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, A. et al. (2021). A Deep Learning Based Intelligent Transceiver Structure for Multiuser MIMO. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics