iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-86137-7_48
Adaptive Data Transmission and Task Scheduling for High-Definition Map Update | SpringerLink
Skip to main content

Adaptive Data Transmission and Task Scheduling for High-Definition Map Update

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

  • 1890 Accesses

Abstract

In recent years, high-definition (HD) maps are considered to be significant complements to the on-board sensors of autonomous vehicles. Due to the highly dynamic characteristic of HD map, how to update HD maps fast and efficiently has become the pivotal issue which attracts great attentions. Currently, most of the research on this issue focuses on the crowdsourcing protocol design or specific updating method meanwhile disregarding the need of communication and computing resource in HD map update. Therefore, in this paper, we propose an integrated update framework including both an adaptive data transmission scheme and an adaptive task scheduling scheme to realize fast data collection and fast data processing for HD map update. To the best of our knowledge, this is the first work that addresses the problem of HD map update which takes the need of communication and computing resource into consideration. In this paper, we firstly illustrate the system architecture of our HD map update framework. Based on that, to realize fast data collection, we propose an adaptive data transmission scheme, which optimizes the transmission rate on different links of each vehicle considering the wireless channel capacity and fronthaul link capacity of the access points. Besides, to realize fast data processing, we propose an adaptive task scheduling scheme, which enables cooperative computing between the edge nodes and cloud computing server, considering the constraints of computing capacity and backhaul link capacity. To the end, we carry out simulations to verify the effectiveness of our proposed policies.

This work was supported by the Natural Science Foundation of China (NSFC) under Grants 61871362 and U19B2023, and by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA17040517.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Automated vehicles require intelligent HD maps for reliable and safe driving. https://nds-association.org/hd-maps/. Accessed 12 Aug 2020

  2. Extending the vision of automated vehicles with HD Maps and ADASIS. https://download.tomtom.com/open/banners. Accessed 30 Mar 2020

  3. The future of maps: technologies, processes, and ecosystem. https://www.here.com/sites/g/files/odxslz166/files/2019-01/. Accessed 30 Mar 2020

  4. Fratta, L., Gerla, M., Kleinrock, L.: The flow deviation method: An approach to store-and-forward communication network design. Networks 3(2), 97–133 (1973)

    Article  MathSciNet  Google Scholar 

  5. Hussain, R., Zeadally, S.: Autonomous cars: research results, issues, and future challenges. IEEE Commun. Surv. Tutorials 21(2), 1275–1313 (2018)

    Article  Google Scholar 

  6. Kim, K., Cho, S., Chung, W.: HD map update for autonomous driving with crowdsourced data. IEEE Robot. Autom. Lett. 6(2), 1895–1901 (2021). https://doi.org/10.1109/LRA.2021.3060406

    Article  Google Scholar 

  7. Liebner, M., Jain, D., Schauseil, J., Pannen, D., Hackelöer, A.: Crowdsourced HD map patches based on road model inference and graph-based slam. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1211–1218 (2019). https://doi.org/10.1109/IVS.2019.8813860

  8. Luo, S., Chen, X., Wu, Q., Zhou, Z., Yu, S.: HFEL: joint edge association and resource allocation for cost-efficient hierarchical federated edge learning. IEEE Trans. Wirel. Commun. 19(10), 6535–6548 (2020)

    Article  Google Scholar 

  9. Pannen, D., Liebner, M., Hempel, W., Burgard, W.: How to keep HD maps for automated driving up to date. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2288–2294 (2020). https://doi.org/10.1109/ICRA40945.2020.9197419

  10. Ren, J., Yu, G., He, Y., Li, G.Y.: Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 68(5), 5031–5044 (2019)

    Article  Google Scholar 

  11. Sawahashi, M., Kishiyama, Y., Morimoto, A., Nishikawa, D., Tanno, M.: Coordinated multipoint transmission/reception techniques for LTE-advanced [coordinated and distributed MIMO]. IEEE Wirel. Commun. 17(3), 26–34 (2010). https://doi.org/10.1109/MWC.2010.5490976

    Article  Google Scholar 

  12. Seif, H.G., Hu, X.: Autonomous driving in the icity—HD maps as a key challenge of the automotive industry. Engineering 2(2), 159–162 (2016)

    Article  Google Scholar 

  13. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxi Liu or Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Wang, Z., Zhang, C., Gu, C., Pan, M., Zhang, X. (2021). Adaptive Data Transmission and Task Scheduling for High-Definition Map Update. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics