iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-85987-9_5
Evolving Homomorphic Secret Sharing for Hierarchical Access Structures | SpringerLink
Skip to main content

Evolving Homomorphic Secret Sharing for Hierarchical Access Structures

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12835))

Included in the following conference series:

Abstract

Secret sharing is a cryptographic primitive that divides a secret into several shares, and allows only some combinations of shares to recover the secret. As it can also be used in secure multi-party computation protocol with outsourcing servers, several variations of secret sharing are devised for this purpose. Most of the existing protocols require the number of computing servers to be determined in advance. However, in some situations we may want the system to be “evolving”. We may want to increase the number of servers and strengthen the security guarantee later in order to improve availability and security of the system. Although evolving secret sharing schemes are available, they do not support computing on shares. On the other hand, “homomorphic” secret sharing allows computing on shares with small communication, but they are not evolving. As the contribution of our work, we give the definition of “evolving homomorphic” secret sharing supporting both properties. We propose two schemes, one with hierarchical access structure supporting multiplication, and the other with partially hierarchical access structure supporting computation of low degree polynomials. Comparing to the work with similar functionality of Choudhuri et al. (IACR ePrint 2020), our schemes have smaller communication costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We could also go all the way by using the random oracle model. However, the random oracle model usually allows us to do more: a reduction algorithm can simulate an output of any queried input to the hash function. We do not use this property, and hence do not directly assume the random oracle.

  2. 2.

    A public bulletin board can be used for keeping the record and checking the uniqueness of all IDs.

  3. 3.

    It is important to note that the correctness of our protocol does not depend on the number of all parties, but the minimum number of parties involving in the reconstruction, denoted by \(k_m\). Therefore, although \(k_m\) must be polynomial of the security parameter, our protocol can support infinite number of parties.

References

  1. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_17

    Chapter  Google Scholar 

  2. Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 529–555 (2020)

    Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  4. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

    Chapter  Google Scholar 

  5. Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020). https://toc.cryptobook.us/book.pdf

  6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19

    Chapter  Google Scholar 

  7. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: 9th Innovations in Theoretical Computer Science Conference (2018)

    Google Scholar 

  8. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1

    Chapter  Google Scholar 

  9. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: Secure multiparty computation with dynamic participants. IACR Cryptology ePrint Archive 2020/754 (2020)

    Google Scholar 

  10. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 554–563 (1994)

    Google Scholar 

  11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229 (1987)

    Google Scholar 

  14. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets on a blockchain. IACR Cryptology ePrint Archive 2020/504 (2020)

    Google Scholar 

  15. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_8

    Chapter  Google Scholar 

  16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive (2011)

    Google Scholar 

  17. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 797–808 (2012)

    Google Scholar 

  18. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold secret sharing. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 148–168. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1_13

    Chapter  Google Scholar 

  19. Knill, O.: A multivariable chinese remainder theorem. arXiv preprint arXiv:1206.5114 (2012)

  20. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_19

    Chapter  Google Scholar 

  21. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresholds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_12

    Chapter  Google Scholar 

  22. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 279–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_11

    Chapter  Google Scholar 

  23. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions. Federal Information Processing Standards Publication 202 (2015)

    Google Scholar 

  24. Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive t-secure homomorphic secret sharing for low degree polynomials. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 763–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_34

    Chapter  Google Scholar 

  25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  26. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_26

    Chapter  Google Scholar 

  27. Traverso, G., Demirel, D., Buchmann, J.: Performing computations on hierarchically shared secrets. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 141–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_9

    Chapter  Google Scholar 

  28. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

    Google Scholar 

Download references

Acknowledgments

Nuttapong Attrapadung was partly supported by JST CREST Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant Number 19H01109. Kanta Matsuura was partially supported by JSPS KAKENHI Grant Number 17KT0081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittiphop Phalakarn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K. (2021). Evolving Homomorphic Secret Sharing for Hierarchical Access Structures. In: Nakanishi, T., Nojima, R. (eds) Advances in Information and Computer Security. IWSEC 2021. Lecture Notes in Computer Science(), vol 12835. Springer, Cham. https://doi.org/10.1007/978-3-030-85987-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85987-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85986-2

  • Online ISBN: 978-3-030-85987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics