Abstract
Secret sharing is a cryptographic primitive that divides a secret into several shares, and allows only some combinations of shares to recover the secret. As it can also be used in secure multi-party computation protocol with outsourcing servers, several variations of secret sharing are devised for this purpose. Most of the existing protocols require the number of computing servers to be determined in advance. However, in some situations we may want the system to be “evolving”. We may want to increase the number of servers and strengthen the security guarantee later in order to improve availability and security of the system. Although evolving secret sharing schemes are available, they do not support computing on shares. On the other hand, “homomorphic” secret sharing allows computing on shares with small communication, but they are not evolving. As the contribution of our work, we give the definition of “evolving homomorphic” secret sharing supporting both properties. We propose two schemes, one with hierarchical access structure supporting multiplication, and the other with partially hierarchical access structure supporting computation of low degree polynomials. Comparing to the work with similar functionality of Choudhuri et al. (IACR ePrint 2020), our schemes have smaller communication costs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We could also go all the way by using the random oracle model. However, the random oracle model usually allows us to do more: a reduction algorithm can simulate an output of any queried input to the hash function. We do not use this property, and hence do not directly assume the random oracle.
- 2.
A public bulletin board can be used for keeping the record and checking the uniqueness of all IDs.
- 3.
It is important to note that the correctness of our protocol does not depend on the number of all parties, but the minimum number of parties involving in the reconstruction, denoted by \(k_m\). Therefore, although \(k_m\) must be polynomial of the security parameter, our protocol can support infinite number of parties.
References
Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_17
Beimel, A., Othman, H.: Evolving ramp secret sharing with a small gap. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 529–555 (2020)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)
Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10
Boneh, D., Shoup, V.: A graduate course in applied cryptography (2020). https://toc.cryptobook.us/book.pdf
Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19
Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic secret sharing. In: 9th Innovations in Theoretical Computer Science Conference (2018)
Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1
Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: Secure multiparty computation with dynamic participants. IACR Cryptology ePrint Archive 2020/754 (2020)
Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 554–563 (1994)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229 (1987)
Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets on a blockchain. IACR Cryptology ePrint Archive 2020/504 (2020)
Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_8
Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive (2011)
Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 797–808 (2012)
Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold secret sharing. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 148–168. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1_13
Knill, O.: A multivariable chinese remainder theorem. arXiv preprint arXiv:1206.5114 (2012)
Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_19
Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresholds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_12
Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 279–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_11
NIST: SHA-3 standard: Permutation-based hash and extendable-output functions. Federal Information Processing Standards Publication 202 (2015)
Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K.: Constructive t-secure homomorphic secret sharing for low degree polynomials. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 763–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_34
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_26
Traverso, G., Demirel, D., Buchmann, J.: Performing computations on hierarchically shared secrets. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 141–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_9
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)
Acknowledgments
Nuttapong Attrapadung was partly supported by JST CREST Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant Number 19H01109. Kanta Matsuura was partially supported by JSPS KAKENHI Grant Number 17KT0081.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Phalakarn, K., Suppakitpaisarn, V., Attrapadung, N., Matsuura, K. (2021). Evolving Homomorphic Secret Sharing for Hierarchical Access Structures. In: Nakanishi, T., Nojima, R. (eds) Advances in Information and Computer Security. IWSEC 2021. Lecture Notes in Computer Science(), vol 12835. Springer, Cham. https://doi.org/10.1007/978-3-030-85987-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-85987-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85986-2
Online ISBN: 978-3-030-85987-9
eBook Packages: Computer ScienceComputer Science (R0)