iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-85099-9_4
Temporal EigenPAC for Dyslexia Diagnosis | SpringerLink
Skip to main content

Temporal EigenPAC for Dyslexia Diagnosis

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

Abstract

Electroencephalography (EEG) signals allow to explore the functional activity of the brain cortex in a non-invasive way. However, the analysis of these signals is not straightforward due to the presence of different artifacts and the very low signal-to-noise ratio. Cross-Frequency Coupling (CFC) methods provide a way to extract information from EEG, related to the synchronization among frequency bands. CFC methods are usually applied in a local way, computing the interaction between phase and amplitude at the same electrode. In this work we show a method to compute Phase-Amplitude Coupling (PAC) features among electrodes to study the functional connectivity. Moreover, this has been applied jointly with Principal Component Analysis (PCA) to explore patterns related to Dyslexia in 7-years-old children. The developed methodology reveals the temporal evolution of PAC-based connectivity. Directions of greatest variance computed by PCA are called eigenPACs here, since they resemble the classical eigenfaces representation. The projection of PAC data onto the eigenPACs provide a set of features that has demonstrates their discriminative capability, specifically in the Beta-Gamma bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tabassum, T.M., Munia, K., Aviyente, S.: Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci. Rep. 9, 1–15 (2019)

    Article  Google Scholar 

  2. Peterson, R.L., Pennington, B.F.: Developmental dyslexia. Lancet 379(9830), 1997–2007 (2012). https://doi.org/10.1016/S0140-6736(12)60198-6

    Article  Google Scholar 

  3. Power, A.J., Colling, L.J., Mead, N., Barnes, L., Goswami, U.: Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang. 160, 1–10 (2016). https://doi.org/10.1016/j.bandl.2016.06.006

  4. Ortiz, A., Martínez-Murcia, F.J., Formoso, M.A., Luque, J.L., Sánchez, A.: Dyslexia detection from EEG signals using SSA component correlation and convolutional neural networks. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 655–664. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_54

    Chapter  Google Scholar 

  5. Ortiz, A., López, P.J., Luque, J.L., Martínez-Murcia, F.J., Aquino-Britez, D.A., Ortega, J.: An anomaly detection approach for dyslexia diagnosis using EEG signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11486, pp. 369–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_38

    Chapter  Google Scholar 

  6. Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(7), 2050029 (2020). https://doi.org/10.1142/S012906572050029X

    Article  Google Scholar 

  7. Dvorak, D., Fenton, A.A.: Toward a proper estimation of phase-amplitude coupling in neural oscillations. J. Neurosci Methods 30(225), 42–56 (2014)

    Article  Google Scholar 

  8. Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., Singer, W., Vicente, R.: Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015). https://doi.org/10.1016/j.conb.2014.08.002

    Article  Google Scholar 

  9. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), pp. 506–515 (2010). ISSN 1364–6613. https://doi.org/10.1016/j.tics.2010.09.001

  10. van der Meij, R., Kahana, M., Maris, E.: Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J. Neurosci. 32(1), 111–23 (2012). https://doi.org/10.1523/JNEUROSCI.4816-11.2012

    Article  Google Scholar 

  11. Tort, A.B.L., Komorowski, R., Eichenbaum, H., Kopell, N.: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010). https://doi.org/10.1152/jn.00106.2010

    Article  Google Scholar 

  12. Tort, A.B.L., Kramer, M.A., Thorn, C., Gibson, D.J., Kubota, Y., Graybiel, A.M., et al.: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. U.S.A. 105, 20517–20522 (2008). https://doi.org/10.1073/pnas.0810524105

    Article  Google Scholar 

  13. Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front Neurosci. 7(13), 573 (2019). https://doi.org/10.3389/fnins.2019.00573

    Article  Google Scholar 

  14. Combrisson, E., Nest, T., Brovelli, A., Ince, R.A.A., Soto, J.L.P., Guillot, A., et al.: Tensorpac: an open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput. Biol. 16(10), e1008302 (2020). https://doi.org/10.1371/journal.pcbi.1008302

  15. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), pp. 8659–8666 (2010)

    Google Scholar 

  16. Markiewicz, P.J., Matthews, J.C., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. NeuroImage 46(2), 472–485 (2009)

    Article  Google Scholar 

  17. Illán, I.A., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), pp. 903–916 (2011). ISSN 0020–0255. https://doi.org/10.1016/j.ins.2010.10.027

  18. Álvarez, I., et al.: Alzheimer’s diagnosis using Eigenbrains and support vector machines. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 973–980. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02478-8_122

    Chapter  Google Scholar 

  19. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), pp. 71–86 (1991). https://doi.org/10.1162/jocn.1991.3.1.71

  20. Perera, H., Shiratuddin, M.F., Wong, K.W.: Review of EEG-based pattern classification frameworks for dyslexia. Brain Inf. 5(2), 1–14 (2018)

    Article  Google Scholar 

  21. Cui, Z., Xia, Z., Su, M., Shu, H., Gong, G.: Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach. Hum. Brain Mapp. 37(4), 1443–58 (2016)

    Article  Google Scholar 

  22. Frid, A., Manevitz, L.M.: Features and machine learning for correlating and classifying between brain areas and Dyslexia. arXiv e-prints (2018)

    Google Scholar 

  23. Perera, H., et al.: EEG signal analysis of writing and typing between adults with dyslexia and normal controls. Int. J. Interact. Multimedia Artif. Intell. 5(1), 62 (2018)

    Google Scholar 

  24. Rezvani, Z., et al.: Machine learning classification of dyslexic children based on EEG local network features. BioRxiv, p. 569996 (2019)

    Google Scholar 

  25. Frid, A., Breznitz, Z.: An SVM based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs. In: 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 14 Nov 2012, pp. 1–4 (2012)

    Google Scholar 

  26. Usman, O.L., Muniyandi, R.C., Omar, K., Mohamad, M.: advance machine learning methods for dyslexia biomarker detection: a review of implementation details and challenges. IEEE Access 9, pp. 36879–36897 (2021)

    Google Scholar 

Download references

Acknowledments

This work was supported by project PGC2018-098813-B-C32 (Spanish “Ministerio de Ciencia, Innovaci Universidades”), and by European Regional Development Funds (ERDF). We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. Work by F.J.M.M. was supported by the MICINN “Juan de la Cierva - Incorporación” Fellowship. We also thank the Leeduca research group and Junta de Andalucí for the data supplied and the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás J. Gallego-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallego-Molina, N.J., Formoso, M., Ortiz, A., Martínez-Murcia, F.J., Luque, J.L. (2021). Temporal EigenPAC for Dyslexia Diagnosis. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics