Abstract
Electroencephalography (EEG) signals allow to explore the functional activity of the brain cortex in a non-invasive way. However, the analysis of these signals is not straightforward due to the presence of different artifacts and the very low signal-to-noise ratio. Cross-Frequency Coupling (CFC) methods provide a way to extract information from EEG, related to the synchronization among frequency bands. CFC methods are usually applied in a local way, computing the interaction between phase and amplitude at the same electrode. In this work we show a method to compute Phase-Amplitude Coupling (PAC) features among electrodes to study the functional connectivity. Moreover, this has been applied jointly with Principal Component Analysis (PCA) to explore patterns related to Dyslexia in 7-years-old children. The developed methodology reveals the temporal evolution of PAC-based connectivity. Directions of greatest variance computed by PCA are called eigenPACs here, since they resemble the classical eigenfaces representation. The projection of PAC data onto the eigenPACs provide a set of features that has demonstrates their discriminative capability, specifically in the Beta-Gamma bands.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tabassum, T.M., Munia, K., Aviyente, S.: Time-frequency based phase-amplitude coupling measure for neuronal oscillations. Sci. Rep. 9, 1–15 (2019)
Peterson, R.L., Pennington, B.F.: Developmental dyslexia. Lancet 379(9830), 1997–2007 (2012). https://doi.org/10.1016/S0140-6736(12)60198-6
Power, A.J., Colling, L.J., Mead, N., Barnes, L., Goswami, U.: Neural encoding of the speech envelope by children with developmental dyslexia. Brain Lang. 160, 1–10 (2016). https://doi.org/10.1016/j.bandl.2016.06.006
Ortiz, A., Martínez-Murcia, F.J., Formoso, M.A., Luque, J.L., Sánchez, A.: Dyslexia detection from EEG signals using SSA component correlation and convolutional neural networks. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 655–664. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_54
Ortiz, A., López, P.J., Luque, J.L., Martínez-Murcia, F.J., Aquino-Britez, D.A., Ortega, J.: An anomaly detection approach for dyslexia diagnosis using EEG signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11486, pp. 369–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_38
Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(7), 2050029 (2020). https://doi.org/10.1142/S012906572050029X
Dvorak, D., Fenton, A.A.: Toward a proper estimation of phase-amplitude coupling in neural oscillations. J. Neurosci Methods 30(225), 42–56 (2014)
Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., Singer, W., Vicente, R.: Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015). https://doi.org/10.1016/j.conb.2014.08.002
Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), pp. 506–515 (2010). ISSN 1364–6613. https://doi.org/10.1016/j.tics.2010.09.001
van der Meij, R., Kahana, M., Maris, E.: Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J. Neurosci. 32(1), 111–23 (2012). https://doi.org/10.1523/JNEUROSCI.4816-11.2012
Tort, A.B.L., Komorowski, R., Eichenbaum, H., Kopell, N.: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210 (2010). https://doi.org/10.1152/jn.00106.2010
Tort, A.B.L., Kramer, M.A., Thorn, C., Gibson, D.J., Kubota, Y., Graybiel, A.M., et al.: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. U.S.A. 105, 20517–20522 (2008). https://doi.org/10.1073/pnas.0810524105
Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front Neurosci. 7(13), 573 (2019). https://doi.org/10.3389/fnins.2019.00573
Combrisson, E., Nest, T., Brovelli, A., Ince, R.A.A., Soto, J.L.P., Guillot, A., et al.: Tensorpac: an open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Comput. Biol. 16(10), e1008302 (2020). https://doi.org/10.1371/journal.pcbi.1008302
Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), pp. 8659–8666 (2010)
Markiewicz, P.J., Matthews, J.C., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. NeuroImage 46(2), 472–485 (2009)
Illán, I.A., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), pp. 903–916 (2011). ISSN 0020–0255. https://doi.org/10.1016/j.ins.2010.10.027
Álvarez, I., et al.: Alzheimer’s diagnosis using Eigenbrains and support vector machines. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 973–980. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02478-8_122
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), pp. 71–86 (1991). https://doi.org/10.1162/jocn.1991.3.1.71
Perera, H., Shiratuddin, M.F., Wong, K.W.: Review of EEG-based pattern classification frameworks for dyslexia. Brain Inf. 5(2), 1–14 (2018)
Cui, Z., Xia, Z., Su, M., Shu, H., Gong, G.: Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach. Hum. Brain Mapp. 37(4), 1443–58 (2016)
Frid, A., Manevitz, L.M.: Features and machine learning for correlating and classifying between brain areas and Dyslexia. arXiv e-prints (2018)
Perera, H., et al.: EEG signal analysis of writing and typing between adults with dyslexia and normal controls. Int. J. Interact. Multimedia Artif. Intell. 5(1), 62 (2018)
Rezvani, Z., et al.: Machine learning classification of dyslexic children based on EEG local network features. BioRxiv, p. 569996 (2019)
Frid, A., Breznitz, Z.: An SVM based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs. In: 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 14 Nov 2012, pp. 1–4 (2012)
Usman, O.L., Muniyandi, R.C., Omar, K., Mohamad, M.: advance machine learning methods for dyslexia biomarker detection: a review of implementation details and challenges. IEEE Access 9, pp. 36879–36897 (2021)
Acknowledments
This work was supported by project PGC2018-098813-B-C32 (Spanish “Ministerio de Ciencia, Innovaci Universidades”), and by European Regional Development Funds (ERDF). We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. Work by F.J.M.M. was supported by the MICINN “Juan de la Cierva - Incorporación” Fellowship. We also thank the Leeduca research group and Junta de Andalucí for the data supplied and the support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gallego-Molina, N.J., Formoso, M., Ortiz, A., Martínez-Murcia, F.J., Luque, J.L. (2021). Temporal EigenPAC for Dyslexia Diagnosis. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-85099-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85098-2
Online ISBN: 978-3-030-85099-9
eBook Packages: Computer ScienceComputer Science (R0)