iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-84522-3_9
Computational Prediction of Protein-Protein Interactions in Plants Using Only Sequence Information | SpringerLink
Skip to main content

Computational Prediction of Protein-Protein Interactions in Plants Using Only Sequence Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12836))

Included in the following conference series:

Abstract

Protein-protein interactions (PPIs) in plants plays a significant role in plant biology and functional organization of cells. Although, a large amount of plant PPIs data have been generated by high-throughput techniques, but due to the complexity of plants cells, the PPIs pairs currently obtained by experimental methods cover only a small fraction of the complete plants PPIs network. In addition, the experimental approaches for identifying PPIs in plants are laborious, time-consuming, and costly. Hence, it is highly desirable to develop more efficient approaches to detect PPIs in plants. In this study, we present a novel computational method combining weighted sparse representation-based classifier (WSRC) with inverse fast Fourier transform (IFFT) representation scheme which was adopted in position specific scoring matrix (PSSM) to extract features from plant protein sequences. When performing the proposed method on the plant PPIs data set of Maize, we achieved excellent results with high accuracies of 89.12%. To further assess the prediction performance of the proposed approach, we compared it with the state-of-art support vector machine (SVM) classifier. Experimental results demonstrated that the proposed method has a great potential to become a powerful tool for exploring the plants cells function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Y., Weckwerth, W.: Mass spectrometry untangles plant membrane protein signaling networks. Trends Plant Sci. 25(9), 930–944 (2020)

    Article  Google Scholar 

  2. Matiolli, C.C., Melotto, M.: A comprehensive Arabidopsis yeast two-hybrid library for protein-protein interaction studies: a resource to the plant research community. Mol. Plant-Microbe Interact. 31, 899–902 (2018)

    Article  Google Scholar 

  3. Di Silvestre, D., Bergamaschi, A., Bellini, E., Mauri, P.: Large scale proteomic data and network-based systems biology approaches to explore the plant world. Proteomes 6, 27 (2018)

    Article  Google Scholar 

  4. Waese, J., et al.: ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 29, 1806–1821 (2017)

    Article  Google Scholar 

  5. Hartmann, J., et al.: The effective design of sampling campaigns for emerging chemical and microbial contaminants in drinking water and its resources based on literature mining. Sci. Total Environ. 742, 140546 (2020)

    Google Scholar 

  6. An, D., Cao, H.X., Li, C., Humbeck, K., Wang, W.: Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes. Genes 9, 43 (2018)

    Article  Google Scholar 

  7. Chou, K.-C., Shen, H.-B.: Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5, e11335 (2010)

    Google Scholar 

  8. Lamesch, P., et al.: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012)

    Article  Google Scholar 

  9. Gu, H., Zhu, P., Jiao, Y., Meng, Y., Chen, M.: PRIN: a predicted rice interactome network. BMC Bioinform. 12, 1–13 (2011)

    Article  Google Scholar 

  10. Licata, L., et al.: MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012)

    Article  Google Scholar 

  11. Li, J.-Q., You, Z.-H., Li, X., Ming, Z., Chen, X.: PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinf. 14, 1165–1172 (2017)

    Article  Google Scholar 

  12. You, Z.-H., Lei, Y.-K., Zhu, L., Xia, J., Wang, B.: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. In: BMC Bioinformatics, pp. 1–11. Springer (2013)

    Google Scholar 

  13. You, Z.-H., Lei, Y.-K., Gui, J., Huang, D.-S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26, 2744–2751 (2010)

    Article  Google Scholar 

  14. Wang, Y.-B., et al.: Predicting protein–protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13, 1336–1344 (2017)

    Article  Google Scholar 

  15. You, Z.-H., Yu, J.-Z., Zhu, L., Li, S., Wen, Z.-K.: A MapReduce based parallel SVM for large-scale predicting protein–protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  16. Hu, L., Wang, X., Huang, Y.-A., Hu, P., You, Z.-H.: A survey on computational models for predicting protein–protein interactions. Brief. Bioinform. (2021)

    Google Scholar 

  17. Lei, Y.-K., You, Z.-H., Dong, T., Jiang, Y.-X., Yang, J.-A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recogn. Lett. 34, 372–379 (2013)

    Article  Google Scholar 

  18. Li, Z.-W., You, Z.-H., Chen, X., Gui, J., Nie, R.: Highly accurate prediction of protein-protein interactions via incorporating evolutionary information and physicochemical characteristics. Int. J. Mol. Sci. 17, 1396 (2016)

    Article  Google Scholar 

  19. Zhu, L., You, Z.-H., Huang, D.-S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS One 8, e58368 (2013)

    Google Scholar 

  20. Wang, Y., You, Z.-H., Yang, S., Li, X., Jiang, T.-H., Zhou, X.: A high efficient biological language model for predicting protein–protein interactions. Cells 8, 122 (2019)

    Article  Google Scholar 

  21. Huang, Y.-A., You, Z.-H., Chen, X., Chan, K., Luo, X.: Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. BMC Bioinform. 17, 1–11 (2016)

    Article  Google Scholar 

  22. Wang, L., et al.: An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8, 5149 (2017)

    Article  Google Scholar 

  23. Chen, Z.-H., You, Z.-H., Zhang, W.-B., Wang, Y.-B., Cheng, L., Alghazzawi, D.: Global vectors representation of protein sequences and its application for predicting self-interacting proteins with multi-grained cascade forest model. Genes 10, 924 (2019)

    Article  Google Scholar 

  24. Sun, T., Zhou, B., Lai, L., Pei, J.: Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinform. 18, 1–8 (2017)

    Article  Google Scholar 

  25. Skoblov, M., et al.: Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development. BioEssays 35, 586–596 (2013)

    Article  Google Scholar 

  26. Xia, J.-F., Zhao, X.-M., Huang, D.-S.: Predicting protein–protein interactions from protein sequences using meta predictor. Amino Acids 39, 1595–1599 (2010)

    Article  Google Scholar 

  27. Song, X.-Y., Chen, Z.-H., Sun, X.-Y., You, Z.-H., Li, L.-P., Zhao, Y.: An ensemble classifier with random projection for predicting protein–protein interactions using sequence and evolutionary information. Appl. Sci. 8, 89 (2018)

    Article  Google Scholar 

  28. Wang, Y.-B., You, Z.-H., Li, X., Jiang, T.-H., Cheng, L., Chen, Z.-H.: Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol. 12, 107–115 (2018)

    Article  Google Scholar 

  29. You, Z.-H., Li, S., Gao, X., Luo, X., Ji, Z.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. BioMed. Res. Int. 2014 (2014)

    Google Scholar 

  30. Yi, H.-C., You, Z.-H., Guo, Z.-H., Huang, D.-S., Chan, K.C.: Learning representation of molecules in association network for predicting intermolecular associations. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)

    Google Scholar 

  31. Tian, T., et al.: AgriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 45, W122–W129 (2017)

    Google Scholar 

  32. Zhu, G., et al.: PPIM: a protein-protein interaction database for maize. Plant Physiol. 170, 618–626 (2016)

    Article  Google Scholar 

  33. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of distantly related proteins. Proc. Natl. Acad. Sci. 84, 4355–4358 (1987)

    Article  Google Scholar 

  34. Li, Z.-W., et al.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8, 23638 (2017)

    Article  Google Scholar 

  35. Zhu, H.-J., You, Z.-H., Shi, W.-L., Xu, S.-K., Jiang, T.-H., Zhuang, L.-H.: Improved prediction of protein-protein interactions using descriptors derived from PSSM via gray level co-occurrence matrix. IEEE Access 7, 49456–49465 (2019)

    Article  Google Scholar 

  36. Wang, L., et al.: Using two-dimensional principal component analysis and rotation forest for prediction of protein-protein interactions. Sci. Rep. 8, 1–10 (2018)

    Google Scholar 

  37. Li, L.-P., Wang, Y.-B., You, Z.-H., Li, Y., An, J.-Y.: PCLPred: a bioinformatics method for predicting protein–protein interactions by combining relevance vector machine model with low-rank matrix approximation. Int. J. Mol. Sci. 19, 1029 (2018)

    Article  Google Scholar 

  38. Altschul, S.F., Koonin, E.V.: Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends Biochem. Sci. 23, 444–447 (1998)

    Article  Google Scholar 

  39. Nussbaumer, H.J.: The fast Fourier transform. In: Fast Fourier Transform and Convolution Algorithms, pp. 80–111. Springer (1981)

    Google Scholar 

  40. Anitha, T., Ramachandran, S.: Novel algorithms for 2-D FFT and its inverse for image compression. In: 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, pp. 62–65. IEEE (2013)

    Google Scholar 

  41. Liao, B., Jiang, Y., Yuan, G., Zhu, W., Cai, L., Cao, Z.: Learning a weighted meta-sample based parameter free sparse representation classification for microarray data. PLoS One 9, e104314 (2014)

    Google Scholar 

  42. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2008)

    Article  Google Scholar 

  43. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp. 3360–3367. IEEE (2010)

    Google Scholar 

  44. Sharma, A., Paliwal, K.K.: A deterministic approach to regularized linear discriminant analysis. Neurocomputing 151, 207–214 (2015)

    Article  Google Scholar 

  45. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Google Scholar 

  46. Lu, C.-Y., Min, H., Gui, J., Zhu, L., Lei, Y.-K.: Face recognition via weighted sparse representation. J. Vis. Commun. Image Represent. 24, 111–116 (2013)

    Article  Google Scholar 

  47. Wong, L., You, Z.-H., Li, S., Huang, Y.-A., Liu, G.: Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor. In: International Conference on Intelligent Computing, pp. 713–720. Springer (2015)

    Google Scholar 

  48. Lei, Y.-K., You, Z.-H., Ji, Z., Zhu, L., Huang, D.-S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. In: BMC Bioinformatics, pp. 1–18. Springer (2012)

    Google Scholar 

  49. Zhu, L., You, Z.-H., Huang, D.-S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121, 99–107 (2013)

    Article  Google Scholar 

  50. An, J.-Y., et al.: Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget 7, 82440 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant NO. 61722212 and Grant NO. 62002297.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J. et al. (2021). Computational Prediction of Protein-Protein Interactions in Plants Using Only Sequence Information. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics