iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-83508-8_17
Computing Weighted Subset Transversals in H-Free Graphs | SpringerLink
Skip to main content

Computing Weighted Subset Transversals in H-Free Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Abstract

For the Odd Cycle Transversal problem, the task is to find a small set S of vertices in a graph that intersects every cycle of odd length. The Subset Odd Cycle Transversal requires S to intersect only those odd cycles that include a vertex of a distinguished vertex subset T. If we are given weights for the vertices, we ask instead that S has small weight: this is the problem Weighted Subset Odd Cycle Transversal. We prove an almost-complete complexity dichotomy for Weighted Subset Odd Cycle Transversal for graphs that do not contain a graph H as an induced subgraph. Our general approach can also be used for Weighted Subset Feedback Vertex Set, which enables us to generalize a recent result of Papadopoulos and Tzimas.

The research in this paper received support from the Leverhulme Trust (RPG-2016-258).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Proofs of Lemmas 14 are omitted for space reasons. A full version of this paper can be found at https://arxiv.org/abs/2007.14514.

References

  1. Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.: Induced subgraphs of bounded treewidth and the container method. In: Proceedings of the SODA, pp. 1948–1964 (2021)

    Google Scholar 

  2. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node multiway cut and subset feedback vertex set on graphs of bounded mim-width. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 388–400. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-60440-0_31

    Chapter  Google Scholar 

  3. Brettell, N., Johnson, M., Paesani, G., Paulusma, D.: Computing subset transversals in \({H}\)-free graphs. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 187–199. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-60440-0_15

    Chapter  Google Scholar 

  4. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected transversals in graphs: New hardness results and tractable cases using the price of connectivity. Theoret. Comput. Sci. 705, 75–83 (2018)

    Article  MathSciNet  Google Scholar 

  5. Dabrowski, K.K., Feghali, C., Johnson, M., Paesani, G., Paulusma, D., Rzążewski, P.: On cycle transversals and their connected variants in the absence of a small linear forest. Algorithmica 82, 2841–2866 (2020)

    Article  MathSciNet  Google Scholar 

  6. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. Algorithmica 69, 216–231 (2014)

    Article  MathSciNet  Google Scholar 

  7. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(P_6\)-free graphs. In: Proceedings of the SODA, pp. 1257–1271 (2019)

    Google Scholar 

  8. Johnson, M., Paesani, G., Paulusma, D.: Connected Vertex Cover for \((s{P}_1+{P}_5)\)-free graphs. Algorithmica 82, 20–40 (2020)

    Article  MathSciNet  Google Scholar 

  9. Lozin, V., Malyshev, D., Mosca, R., Zamaraev, V.: Independent domination versus weighted independent domination. Inf. Process. Lett. 156, 105914 (2020)

    Google Scholar 

  10. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discret. Math. 340, 1210–1226 (2017)

    Article  MathSciNet  Google Scholar 

  11. Paesani, G., Paulusma, D., Rzążewski, P.: Feedback vertex set and even cycle transversal for \(H\)-free graphs: finding large block graphs. CoRR abs/2105.02736 (2021)

    Google Scholar 

  12. Papadopoulos, C., Tzimas, S.: Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs. Discret. Appl. Math. 258, 204–221 (2019)

    Article  MathSciNet  Google Scholar 

  13. Papadopoulos, C., Tzimas, S.: Subset feedback vertex set on graphs of bounded independent set size. Theoret. Comput. Sci. 814, 177–188 (2020)

    Article  MathSciNet  Google Scholar 

  14. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ. Carol. 15, 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniël Paulusma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brettell, N., Johnson, M., Paulusma, D. (2021). Computing Weighted Subset Transversals in H-Free Graphs. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics