iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-82199-9_1
LexDivPara: A Measure of Paraphrase Quality with Integrated Sentential Lexical Complexity | SpringerLink
Skip to main content

LexDivPara: A Measure of Paraphrase Quality with Integrated Sentential Lexical Complexity

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 296))

Included in the following conference series:

  • 1650 Accesses

Abstract

We present a novel method that automatically measures quality of sentential paraphrasing. Our method balances two conflicting criteria: semantic similarity and lexical diversity. Using a diverse annotated corpus, we built learning to rank models on edit distance, BLEU, ROUGE, and cosine similarity features. Extrinsic evaluation on STS Benchmark and ParaBank Evaluation datasets resulted in a model ensemble with moderate to high quality. We applied our method on both small benchmarking and large-scale datasets as resources for the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark.

  2. 2.

    https://github.com/decompositional-semantics-initiative/ParaBank-Eval-Data.

References

  1. Alfter, D., Volodina, E.: Towards single word lexical complexity prediction. In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, New Orleans, Louisiana, pp. 79–88. Association for Computational Linguistics (2018)

    Google Scholar 

  2. Diego Antognini. Py-rouge (2018)

    Google Scholar 

  3. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc., Newton (2009)

    MATH  Google Scholar 

  4. Burges, C.J.C., Svore, K.M., Wu, Q., Gao, J.: Ranking, boosting, and model adaptation (2008)

    Google Scholar 

  5. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 Task 1: semantic textual similarity multilingual and crosslingual focused evaluation, Vancouver, Canada, pp. 1–14. Association for Computational Linguistics (2017)

    Google Scholar 

  6. Cer, D., et al.: Universal sentence encoder for English. In: 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Brussels, Belgium, pp. 169–174. Association for Computational Linguistics (2018)

    Google Scholar 

  7. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System (2016)

    Google Scholar 

  8. Hu, J.E., Rudinger, R., Post, M., Van Durme, B.: ParaBank: monolingual bitext generation and sentential paraphrasing via lexically-constrained neural machine translation. In: AAAI 2019, Honolulu, Hawaii (2019)

    Google Scholar 

  9. Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase database, pp. 758–764. Association for Computational Linguistics (2013)

    Google Scholar 

  10. Hu, J.E., et al.: Improved lexically constrained decoding for translation and monolingual rewriting. In: NAACL 2019, Minneapolis, Minnesota (2019)

    Google Scholar 

  11. Hu, J.E., Singh, A., Holzenberger, N., Post, M., Van Durme, B.: Large-scale, diverse, paraphrastic bitexts via sampling and clustering. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 44–54. Association for Computational Linguistics (2019)

    Google Scholar 

  12. Iyyer, M., Manjunatha, V., Boyd-Graber, J., DaumÈ III, H.: Deep unordered composition rivals syntactic methods for text classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1: Long Papers), Beijing, China, pp. 1681–1691. Association for Computational Linguistics (2015)

    Google Scholar 

  13. Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. Lund Work. Papers Linguist. 53, 61–79 (2009)

    Google Scholar 

  14. Kriz, R., Miltsakaki, E., Apidianaki, M., Callison-Burch, C.: Simplification using paraphrases and context-based lexical substitution. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), New Orleans, Louisiana, pp. 207–217. Association for Computational Linguistics (2018)

    Google Scholar 

  15. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, Barcelona, Spain, pp. 74–81. Association for Computational Linguistics (2004)

    Google Scholar 

  16. Xiaofei, L.: The relationship of lexical richness to the quality of ESL learners’ oral narratives. Mod. Lang. J. 96(2), 190–208 (2012)

    Article  Google Scholar 

  17. Maddela, M., Xu, W.: A word-complexity lexicon and a neural readability ranking model for lexical simplification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 3749–3760. Association for Computational Linguistics (2018)

    Google Scholar 

  18. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit, pp. 55–60. Association for Computational Linguistics (2014)

    Google Scholar 

  19. Miller, F.P., Vandome, A.F., McBrewster, J.: Levenshtein Distance: Information theory, Computer science, String (computer science), String metric, Damerau?Levenshtein distance, Spell checker, Hamming distance. Alpha Press, Orlando (2009)

    Google Scholar 

  20. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, pap. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Read, J.: Assessing Vocabulary. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  23. Sakaguchi, K., Van Durme, B.: Efficient online scalar annotation with bounded support, Melbourne, Australia, pp. 208–218. Association for Computational Linguistics (2018)

    Google Scholar 

  24. Wieting, J., Gimpel, K.: ParaNMT-50M: pushing the limits of paraphrastic sentence embeddings with millions of machine translations, pp. 451–462. Association for Computational Linguistics (2018)

    Google Scholar 

  25. Wilkens, R., Vecchia, A.D., Boito, M.Z., Padró, M., Villavicencio, A.: Size does not matter. frequency does. a study of features for measuring lexical complexity. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS (LNAI), vol. 8864, pp. 129–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12027-0_11

    Chapter  Google Scholar 

  26. Yang, Y., et al.: Multilingual universal sentence encoder for semantic retrieval, pp. 87–94 (2019)

    Google Scholar 

  27. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors would like to thank ACT for assisting with collection of the original text and annotation on Amazon Mechanical Turk. This work is partly supported by the first author’s start-up fund, the first author’s OSU ASR FY22 summer program, NSF CISE/IIS 1838808 grant, and NSF OIA 1849213 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Thieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thieu, T., Do, H., Duong, T., Pu, S., Aakur, S., Khan, S. (2022). LexDivPara: A Measure of Paraphrase Quality with Integrated Sentential Lexical Complexity. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-82199-9_1

Download citation

Publish with us

Policies and ethics