iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-81645-2_22
Aggregate Signature with Traceability of Devices Dynamically Generating Invalid Signatures | SpringerLink
Skip to main content

Aggregate Signature with Traceability of Devices Dynamically Generating Invalid Signatures

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2021)

Abstract

Aggregate signature schemes enable us to aggregate multiple signatures into a single short signature. One of its typical applications is sensor networks, where a large number of users and devices measure their environments, create signatures to ensure the integrity of the measurements, and transmit their signed data. However, if an invalid signature is mixed into aggregation, the aggregate signature becomes invalid, thus if an aggregate signature is invalid, it is necessary to identify the invalid signature. Furthermore, we need to deal with a situation where an invalid sensor generates invalid signatures probabilistically. In this paper, we introduce a model of aggregate signature schemes with interactive tracing functionality that captures such a situation, and define its functional and security requirements and propose aggregate signature schemes that can identify all rogue sensors. More concretely, based on the idea of Dynamic Traitor Tracing, we can trace rogue sensors dynamically and incrementally, and eventually identify all rogue sensors of generating invalid signatures even if the rogue sensors adaptively collude. In addition, the efficiency of our proposed method is also sufficiently practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In general, aggregate signature schemes can aggregate multiple signatures even if they are generated under the same key, but for simplicity, we do not introduce such version in this paper.

  2. 2.

    The mechanism for watermarking contents is detached from the syntax and beyond the scope of this primitive, which is the same treatment as in [FT99].

References

  1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: CCS 2010, pp. 473–484. ACM (2010)

    Google Scholar 

  2. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26

    Chapter  Google Scholar 

  3. Fiat, A., Tassa, T.: Dynamic traitor tracing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_23

    Chapter  Google Scholar 

  4. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an approach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_4

    Chapter  Google Scholar 

  5. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_17

    Chapter  Google Scholar 

  6. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A.: Fault-tolerant aggregate signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 331–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_13

    Chapter  Google Scholar 

  7. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27

    Chapter  Google Scholar 

  8. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public keys without random oracles. Theor. Comput. Sci. 579, 100–125 (2015)

    Article  MathSciNet  Google Scholar 

  9. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_5

    Chapter  Google Scholar 

  10. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28

    Chapter  Google Scholar 

  11. Makarov, A.: A survey of aggregate signature applications. In: Misyurin, S.Y., Arakelian, V., Avetisyan, A.I. (eds.) Advanced Technologies in Robotics and Intelligent Systems. MMS, vol. 80, pp. 309–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33491-8_37

    Chapter  Google Scholar 

  12. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_4

    Chapter  Google Scholar 

  13. Sato, S., Shikata, J.: Interactive aggregate message authentication scheme with detecting functionality. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1316–1328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_110

    Chapter  Google Scholar 

  14. Sato, S., Shikata, J.: Interactive aggregate message authentication equipped with detecting functionality from adaptive group testing. IACR Cryptology ePrint Archive: Report 2020/1218 (2020)

    Google Scholar 

  15. Sato, S., Shikata, J., Matsumoto, T.: Aggregate signature with detecting functionality from group testing. IACR Cryptology ePrint Archive: Report 2020/1219 (2020)

    Google Scholar 

Download references

Acknowledgement

This paper is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The third author was supported by JSPS KAKENHI Grant Number JP18K18055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryu Ishii .

Editor information

Editors and Affiliations

A \(\mathsf {multi\hbox {-}HKK}^+\)

A \(\mathsf {multi\hbox {-}HKK}^+\)

Here, we give the description of \(\mathsf {multi\hbox {-}HKK}^+\) that is constructed based on an ordinary aggregate signature scheme \(\varSigma _{\mathrm {AS}}\) and a cover free family. Recall that a d-cover free family (d-CFF) \(\mathcal {F}=(\mathcal {S},\mathcal {B})\) consists of a set \(\mathcal {S}\) of m elements and a set \(\mathcal {B}\) of n subsets of \(\mathcal {S}\), where \(d< m < n\), such that for any d subsets \(B_{i_1}, \ldots , B_{i_d} \in \mathcal {B}\) and for all distinct \(B \in \mathcal {B} \setminus \{B_{i_1}, \ldots , B_{i_d}\}\), it holds that \(B \notin \bigcup _{j \in [d]} B_{i_j}\).

Let d be an integer such that there exists a prime \(q=2d+1\). Let \(\mathcal {F}=(\mathcal {S},\mathcal {B})\) be a d-CFF based on quadratic polynomials where \(\mathcal {S}\) and \(\mathcal {B}\) are defined as follows:

Figure 4 describes \(\mathsf {multi\hbox {-}HKK}^+\) where \(T_i=\{j\in \{0,\ldots ,q^{k+1}-1\} \mid f_j(x_i)=y_i\}\) (\(i=0,\ldots ,q^2-1\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishii, R. et al. (2021). Aggregate Signature with Traceability of Devices Dynamically Generating Invalid Signatures. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2021. Lecture Notes in Computer Science(), vol 12809. Springer, Cham. https://doi.org/10.1007/978-3-030-81645-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81645-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81644-5

  • Online ISBN: 978-3-030-81645-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics