iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-80209-7_7
An Auditory Cortex Model for Sound Processing | SpringerLink
Skip to main content

An Auditory Cortex Model for Sound Processing

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Abstract

The reconstruction mechanisms built by the human auditory system during sound reconstruction are still a matter of debate. The purpose of this study is to refine the auditory cortex model introduced in [9], and inspired by the geometrical modelling of vision. The algorithm lifts the time-frequency representation of the degraded sound to the Heisenberg group, where it is reconstructed via a Wilson-Cowan integro-differential equation. Numerical experiments on a library of speech recordings are provided, showing the good reconstruction properties of the algorithm.

This study was supported by the IdEx Université de Paris, “ANR-18-IDEX-0001” and by the ANR RUBIN-VASE project, grant ANR-20-CE48-0003 of the French Agence Nationale de la Recherche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The speech material used in the current study is part of an ongoing psycholinguistic project on spoken word recognition. Speech material comprises 49 Italian words and 118 French words. The two sets of words were produced by two (40-year-old) female speakers (a French monolingual speaker and an Italian monolingual speaker) and recorded using a headset microphone AKG C 410 and a Roland Quad Capture audio interface. Recordings took place in the soundproof cabin of the Laboratoire de Phonétique et Phonologie (LPP) of Université de Paris Sorbonne-Nouvelle. Both informants were told to read the set of words as fluently and naturally as possible.

References

  1. Agrachev, A., Barilari, D., Boscain, U.: A comprehensive introduction to Sub-Riemannian geometry. In: Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2019)

    Google Scholar 

  2. Assmann, P., Summerfield, Q.: The perception of speech under adverse conditions. In: Assmann, P. (ed.) Speech Processing in the Auditory System. SHAR, vol. 18, pp. 231–308. Springer, New York (2004). https://doi.org/10.1007/0-387-21575-1_5

    Chapter  Google Scholar 

  3. Barilari, D., Boarotto, F.: Kolmogorov-fokker-planck operators in dimension two: heat kernel and curvature (2017)

    Google Scholar 

  4. Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Gomez Villa, A., Prandi, D.: Visual illusions via neural dynamics: Wilson-cowan-type models and the efficient representation principle. J. Neurophysiol. 123, 1606 (2020)

    Article  Google Scholar 

  5. Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Prandi, D.: A cortical-inspired model for orientation-dependent contrast perception: a link with Wilson-Cowan equations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) SSVM 2019. LNCS, vol. 11603, pp. 472–484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_37

    Chapter  Google Scholar 

  6. Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Prand i, D.: Cortical-inspired Wilson-Cowan-type equations for orientation-dependent contrast perception modelling. J. Math. Imaging Vis. 63, 263 (2020)

    Google Scholar 

  7. Boscain, U., Chertovskih, R., Gauthier, J.P., Remizov, A.: Hypoelliptic diffusion and human vision: a semi-discrete new twist on the petitot theory. SIAM J. Imaging Sci. 7(2), 669–695 (2014)

    Article  MathSciNet  Google Scholar 

  8. Boscain, U., Duplaix, J., Gauthier, J.P., Rossi, F.: Anthropomorphic image reconstruction via hypoelliptic diffusion (2010)

    Google Scholar 

  9. Boscain, U., Prandi, D., Sacchelli, L., Turco, G.: A bio-inspired geometric model for sound reconstruction. J. Math. Neurosci. 11(1), 1–18 (2020). https://doi.org/10.1186/s13408-020-00099-4

    Article  MathSciNet  Google Scholar 

  10. Boscain, U.V., Chertovskih, R., Gauthier, J.P., Prandi, D., Remizov, A.: Highly corrupted image inpainting through hypoelliptic diffusion. J. Math. Imaging Vis. 60(8), 1231–1245 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356(1407), 299–330 (2001)

    Google Scholar 

  12. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the Roto-Translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Google Scholar 

  13. Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 34, 137–150 (1979)

    Article  MathSciNet  Google Scholar 

  14. Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)

    Article  Google Scholar 

  15. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  16. Loebel, A., Nelken, I., Tsodyks, M.: Processing of sounds by population spikes in a model of primary auditory cortex. Front. Neurosci. 1(1), 197–209 (2007)

    Article  Google Scholar 

  17. Mattys, S., Davis, M., Bradlow, A., Scott, S.: Speech recognition in adverse conditions: a review. Lang. Cogn. Neurosci. 27(7–8), 953–978 (2012)

    Google Scholar 

  18. Nelken, I., Calford, M.B.: Processing strategies in auditory cortex: comparison with other sensory modalities. In: Winer, J., Schreiner, C. (eds.) The Auditory Cortex, pp. 643–656. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-0074-6_30

    Chapter  Google Scholar 

  19. Papoulis, A.: Probability, Random Variables and Stochastic Processes, 3rd edn., p. 138. McGraw-Hill Companies, New York (1991)

    Google Scholar 

  20. Petitot, J., Tondut, Y.: Vers une neurogéométrie. fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques et Sci. humaines 145, 5–101 (1999)

    Google Scholar 

  21. Prandi, D., Gauthier, J.P.: A Semidiscrete Version of the Citti-petitot-sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition. BRIEFSMATH, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-78482-3

    Book  MATH  Google Scholar 

  22. Rankin, J., Sussman, E., Rinzel, J.: Neuromechanistic model of auditory bistability. PLoS Comput. Biol. 11(11), e1004555 (2015)

    Article  Google Scholar 

  23. Rauschecker, J.P.: Auditory and visual cortex of primates: a comparison of two sensory systems. Eur. J. Neurosci. 41(5), 579–585 (2015)

    Article  Google Scholar 

  24. Reimann, H.M.: Signal processing in the cochlea: the structure equations. J. Math. Neurosci. 1(1), 43 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tian, B., Kuśmierek, P., Rauschecker, J.P.: Analogues of simple and complex cells in rhesus monkey auditory cortex. Proc. Nat. Acad. Sci. 110(19), 7892–7897 (2013)

    Article  Google Scholar 

  26. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  27. Yang, X., Wang, K., Shamma, S.: Auditory representations of acoustic signals. IEEE Trans. Inf. Theory 38, 68 (1992)

    Article  Google Scholar 

  28. Zulfiqar, I., Moerel, M., Formisano, E.: Spectro-temporal processing in a two-stream computational model of auditory cortex. Front. Comput. Neurosci. 13, 95 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Prandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asswad, R., Boscain, U., Turco, G., Prandi, D., Sacchelli, L. (2021). An Auditory Cortex Model for Sound Processing. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics