iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-78292-4_18
Evaluating Critical Reinforcement Learning Framework in the Field | SpringerLink
Skip to main content

Evaluating Critical Reinforcement Learning Framework in the Field

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12748))

Included in the following conference series:

Abstract

Reinforcement Learning (RL) is learning what action to take next by mapping situations to actions so as to maximize cumulative rewards. In recent years RL has achieved great success in inducing effective pedagogical policies for various interactive e-learning environments. However, it is often prohibitive to identify the critical pedagogical decisions that actually contribute to desirable learning outcomes. In this work, by utilizing the RL framework we defined critical decisions to be those states in which the agent has to take the optimal actions, and subsequently, the Critical policy as carrying out optimal actions in the critical states while acting randomly in others. We proposed a general Critical-RL framework for identifying critical decisions and inducing a Critical policy. The effectiveness of our Critical-RL framework is empirically evaluated from two perspectives: whether optimal actions must be carried out in critical states (the necessary hypothesis) and whether only carrying out optimal actions in critical states is as effective as a fully-executed RL policy (the sufficient hypothesis). Our results confirmed both hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrychowicz, M., Baker, B., et al.: Learning dexterous in-hand manipulation. arXiv preprint arXiv:1808.00177 (2018)

  2. Ausin, M.S., Azizsoltani, H., Barnes, T., Chi, M.: Leveraging deep reinforcement learning for pedagogical policy induction in an intelligent tutoring system. In: EDM (2019)

    Google Scholar 

  3. Sanz Ausin, M., Maniktala, M., Barnes, T., Chi, M.: Exploring the impact of simple explanations and agency on batch deep reinforcement learning induced pedagogical Policies. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 472–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_38

    Chapter  Google Scholar 

  4. Ausin, M.S., Maniktala, M., Barnes, T., Chi, M.: Tackling the credit assignment problem in reinforcement learning-induced pedagogical policies with neural networks. In: AIED (2021)

    Google Scholar 

  5. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discret. Event Dyn. Syst. 13(1–2), 41–77 (2003). https://doi.org/10.1023/A:1022140919877

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J., Woolf, B.P., Beal, C.R.: Advisor: a machine learning architecture for intelligent tutor construction. In: AAAI/IAAI, pp. 552–557 (2000)

    Google Scholar 

  7. Chi, M., VanLehn, K., Litman, D., Jordan, P.: Empirically evaluating the application of reinforcement learning to the induction of effective and adaptive pedagogical strategies. User Model. User-Adap. Inter. 21(1–2), 137–180 (2011). https://doi.org/10.1007/s11257-010-9093-1

    Article  Google Scholar 

  8. Clouse, J.A.: On integrating apprentice learning and reinforcement learning. Ph.D. thesis (1996)

    Google Scholar 

  9. Fachantidis, A., Taylor, M.E., Vlahavas, I.P.: Learning to teach reinforcement learning agents. Mach. Learn. Knowl. Extract. 1, 21–42 (2017)

    Article  Google Scholar 

  10. Iglesias, A., Martínez, P., Aler, R., Fernández, F.: Reinforcement learning of pedagogical policies in adaptive and intelligent educational systems. Knowl.-Based Syst. 22(4), 266–270 (2009)

    Article  Google Scholar 

  11. Ju, S., Zhou, G., Azizsoltani, H., Barnes, T., Chi, M.: Identifying critical pedagogical decisions through adversarial deep reinforcement learning. In: EDM (2019)

    Google Scholar 

  12. Ju, S., Zhou, G., Barnes, T., Chi, M.: Pick the moment: identifying critical pedagogical decisions using long-short term rewards. In: EDM (2020)

    Google Scholar 

  13. Li, J., Daw, N.D.: Signals in human striatum are appropriate for policy update rather than value prediction, 31 (2011)

    Google Scholar 

  14. Mandel, T., Liu, Y.E., Levine, S., Brunskill, E., Popovic, Z.: Offline policy evaluation across representations with applications to educational games. In: AAMAS, pp. 1077–1084 (2014)

    Google Scholar 

  15. McClure, S.M., Laibson, D.I., Loewenstein, G., Cohen, J.D.: Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004)

    Article  Google Scholar 

  16. McLaren, B.M., Isotani, S.: When is it best to learn with all worked examples? In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, pp. 222–229. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_30

    Chapter  Google Scholar 

  17. McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked examples be given to students? New results and a summary of the current state of research. In: CogSci, pp. 2176–2181 (2008)

    Google Scholar 

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  19. Morris, G., Nevet, A., Arkadir, D., Vaadia, E., Bergman, H.: Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci. 9(8), 1057–1063 (2006)

    Article  Google Scholar 

  20. Najar, A.S., Mitrovic, A., McLaren, B.M.: Adaptive support versus alternating worked examples and tutored problems: which leads to better learning? In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 171–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3_15

    Chapter  Google Scholar 

  21. Narasimhan, K., Kulkarni, T., Barzilay, R.: Language understanding for text-based games using deep reinforcement learning. arXiv preprint arXiv:1506.08941 (2015)

  22. Rafferty, A.N., Brunskill, E., et al.: Faster teaching via POMDP planning. Cogn. Sci. 40(6), 1290–1332 (2016)

    Article  Google Scholar 

  23. Renkl, A., Atkinson, R.K., Maier, U.H., Staley, R.: From example study to problem solving: smooth transitions help learning. J. Exp. Educ. 70(4), 293–315 (2002)

    Article  Google Scholar 

  24. Roesch, M.R., Calu, D.J., Schoenbaum, G.: Dopamine neurons encode the better option in rats deciding between different delayed or sized rewards. Nat. Neurosci. 10(12), 1615–1624 (2007)

    Article  Google Scholar 

  25. Rowe, J., Mott, B., Lester, J.: Optimizing player experience in interactive narrative planning: a modular reinforcement learning approach. In: Tenth Artificial Intelligence and Interactive Digital Entertainment Conference (2014)

    Google Scholar 

  26. Rowe, J.P., Lester, J.C.: Improving student problem solving in narrative-centered learning environments: a modular reinforcement learning framework. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) AIED 2015. LNCS (LNAI), vol. 9112, pp. 419–428. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19773-9_42

    Chapter  Google Scholar 

  27. Shen, S., Ausin, M.S., Mostafavi, B., Chi, M.: Improving learning & reducing time: a constrained action-based reinforcement learning approach. In: UMAP (2018)

    Google Scholar 

  28. Shen, S., Chi, M.: Aim low: correlation-based feature selection for model-based reinforcement learning. In: EDM (2016)

    Google Scholar 

  29. Shen, S., Chi, M.: Reinforcement learning: the sooner the better, or the later the better? In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, pp. 37–44. ACM (2016)

    Google Scholar 

  30. Shen, S., Mostafavi, B., Lynch, C., Barnes, T., Chi, M.: Empirically evaluating the effectiveness of POMDP vs. MDP towards the pedagogical strategies induction. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 327–331. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2_61

    Chapter  Google Scholar 

  31. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  32. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  33. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.: Experimental evaluation of automatic hint generation for a logic tutor. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS (LNAI), vol. 6738, pp. 345–352. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21869-9_45

    Chapter  Google Scholar 

  34. Sul, J.H., Jo, S., Lee, D., Jung, M.W.: Role of rodent secondary motor cortex in value-based action selection. Nat. Neurosci. 14(9), 1202–1208 (2011)

    Article  Google Scholar 

  35. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999)

    Article  MathSciNet  Google Scholar 

  36. Torrey, L., Taylor, M.E.: Teaching on a budget: agents advising agents in reinforcement learning. In: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2013, pp. 1053–1060 (2013)

    Google Scholar 

  37. Van Gog, T., Kester, L., Paas, F.: Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemp. Educ. Psychol. 36(3), 212–218 (2011)

    Article  Google Scholar 

  38. Wang, P., Rowe, J., Min, W., Mott, B., Lester, J.: Interactive narrative personalization with deep reinforcement learning. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (2017)

    Google Scholar 

  39. Zhou, G.: Big, little, or both? Exploring the impact of granularity on learning for students with different incoming competence. In: CogSci (2019)

    Google Scholar 

  40. Zhou, G., et al.: Towards closing the loop: bridging machine-induced pedagogical policies to learning theories. In: EDM (2017)

    Google Scholar 

  41. Zhou, G., Azizsoltani, H., Ausin, M.S., Barnes, T., Chi, M.: Hierarchical reinforcement learning for pedagogical policy induction. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 544–556. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_45

    Chapter  Google Scholar 

  42. Zhou, G., Price, T.W., Lynch, C., Barnes, T., Chi, M.: The impact of granularity on worked examples and problem solving. In: CogSci, pp. 2817–2822 (2015)

    Google Scholar 

  43. Zhou, G., Yang, X., Azizsoltani, H., Barnes, T., Chi, M.: Improving student-tutor interaction through data-driven explanation of hierarchical reinforcement induced pedagogical policies. In: UMAP. ACM (2020)

    Google Scholar 

  44. Zimmer, M., Viappiani, P., Weng, P.: Teacher-student framework: a reinforcement learning approach. In: AAMAS Workshop Autonomous Robots and Multirobot Systems (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF Grants: #1726550, #1651909, and #2013502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ju, S., Zhou, G., Abdelshiheed, M., Barnes, T., Chi, M. (2021). Evaluating Critical Reinforcement Learning Framework in the Field. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12748. Springer, Cham. https://doi.org/10.1007/978-3-030-78292-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78292-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78291-7

  • Online ISBN: 978-3-030-78292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics