iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-78230-6_26
Learning to Sparsify Travelling Salesman Problem Instances | SpringerLink
Skip to main content

Learning to Sparsify Travelling Salesman Problem Instances

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2021)

Abstract

In order to deal with the high development time of exact and approximation algorithms for NP-hard combinatorial optimisation problems and the high running time of exact solvers, deep learning techniques have been used in recent years as an end-to-end approach to find solutions. However, there are issues of representation, generalisation, complex architectures, interpretability of models for mathematical analysis etc. using deep learning techniques. As a compromise, machine learning can be used to improve the run time performance of exact algorithms in a matheuristics framework. In this paper, we use a pruning heuristic leveraging machine learning as a pre-processing step followed by an exact Integer Programming approach. We apply this approach to sparsify instances of the classical travelling salesman problem. Our approach learns which edges in the underlying graph are unlikely to belong to an optimal solution and removes them, thus sparsifying the graph and significantly reducing the number of decision variables. We use carefully selected features derived from linear programming relaxation, cutting planes exploration, minimum-weight spanning tree heuristics and various other local and statistical analysis of the graph. Our learning approach requires very little training data and is amenable to mathematical analysis. We demonstrate that our approach can reliably prune a large fraction of the variables in TSP instances from TSPLIB/MATILDA (>85%) while preserving most of the optimal tour edges. Our approach can successfully prune problem instances even if they lie outside the training distribution, resulting in small optimality gaps between the pruned and original problems in most cases. Using our learning technique, we discover novel heuristics for sparsifying TSP instances, that may be of independent interest for variants of the vehicle routing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For additional detail regarding computation of these features, please see: https://arxiv.org/abs/2104.09345.

  2. 2.

    All code available at: https://github.com/JamesFitzpatrickMLLabs/optlearn.

References

  1. Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ashford, R.: Mixed integer programming: a historical perspective with Xpress-MP. Ann. Oper. Res. 149(1), 5 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  4. Benczúr, A.A.: Approximate s-t min-cuts in o (n\(^{2}\)) time. In: Proceedings of the 28th ACM Symposium on Theory of Computing (1996)

    Google Scholar 

  5. Braun, H.: On solving travelling salesman problems by genetic algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 129–133. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029743

    Chapter  Google Scholar 

  6. Di Caro, G.A.: A survey of machine learning for combinatorial optimization. In: 30th European Conference on Operations Research (EURO) (2019)

    Google Scholar 

  7. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ. Pittsburgh Pa Management Sciences Research Group (1976)

    Google Scholar 

  8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

    MathSciNet  MATH  Google Scholar 

  9. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81 (1997)

    Article  Google Scholar 

  10. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Oper. Res. 62(1), 114–122 (2014)

    Article  MathSciNet  Google Scholar 

  11. Fung, W.-S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general framework for graph sparsification. SIAM J. Comput. 48(4), 1196–1223 (2019)

    Article  MathSciNet  Google Scholar 

  12. Grassia, M., Lauri, J., Dutta, S., Ajwani, D.: Learning multi-stage sparsification for maximum clique enumeration. arXiv preprint arXiv:1910.00517 (2019)

  13. Gupta, P., Gasse, M., Khalil, E.B., Kumar, M.P., Lodi, A., Bengio, Y.: Hybrid models for learning to branch. In: Larochelle, H., Ranzato, M.A., Hadsell, R., Balcan, M.-F., Lin, H.-T. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, virtual (2020)

    Google Scholar 

  14. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  15. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hopfield, J.J., Tank, D.W.: “Neural" computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985). https://doi.org/10.1007/BF00339943

    Article  MATH  Google Scholar 

  17. Hougardy, S., Schroeder, R.T.: Edge elimination in TSP instances. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 275–286. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_23

    Chapter  MATH  Google Scholar 

  18. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  19. Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration variants of subset problems. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 2314–2321. AAAI Press (2019)

    Google Scholar 

  20. Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.: PySCIPOpt: mathematical programming in Python with the SCIP optimization suite. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_37

    Chapter  MATH  Google Scholar 

  21. Nazari, M., Oroojlooy, A., Snyder, L.V., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: Advances in Neural Information Processing Systems, pp. 9839–9849 (2018)

    Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  Google Scholar 

  24. Reinelt, G.: TSPLIB-a traveling salesman problem library. INFORMS J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

  25. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  26. Serdyukov, A.I.: On some extremal walks in graphs. Upravlyaemye Sistemy 17, 76–79 (1978)

    MATH  Google Scholar 

  27. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29

    Chapter  Google Scholar 

  28. Sun, Y., Ernst, A., Li, X., Weiner, J.: Generalization of machine learning for problem reduction: a case study on travelling salesman problems. OR Spectr. 2020, 1–27 (2020). https://doi.org/10.1007/s00291-020-00604-x

    Article  Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  30. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)

    Google Scholar 

  31. Wang, Y., Remmel, J.: A method to compute the sparse graphs for traveling salesman problem based on frequency quadrilaterals. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7_22

    Chapter  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research supported in part by a grant from Science Foundation Ireland under Grant number 18/CRT/6183. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Fitzpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fitzpatrick, J., Ajwani, D., Carroll, P. (2021). Learning to Sparsify Travelling Salesman Problem Instances. In: Stuckey, P.J. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2021. Lecture Notes in Computer Science(), vol 12735. Springer, Cham. https://doi.org/10.1007/978-3-030-78230-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78230-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78229-0

  • Online ISBN: 978-3-030-78230-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics