iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-78191-0_15
Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference | SpringerLink
Skip to main content

Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Abstract

Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring six relatively sparse b-shells. These requirements are a drastic reduction of those used in current proposals to estimate grey matter cytoarchitecture. We then apply current tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our LFI-based algorithm yields not only an estimation of the parameter vector \(\boldsymbol{\theta }\) that best describes a given observed data point \(\boldsymbol{x_o}\), but also a full posterior distribution \(p(\boldsymbol{\theta }|\boldsymbol{x}_o)\) over the parameter space. This enables a richer description of the model inversion results providing indicators such as confidence intervals for the estimations, and better understanding of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline to the HCP MGH dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allman, J.M., et al.: The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct. Funct. 214, 495–517 (2010)

    Article  Google Scholar 

  2. Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H.B., Zilles, K.: Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412(2), 319–341 (1999)

    Article  Google Scholar 

  3. Balinov, B., Jönsson, B., Linse, P., Söderman, O.: The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation form molecules in spheres and between planes. J. Magn. Reson. Ser. A 104(1), 17–25 (1993)

    Article  Google Scholar 

  4. Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385 (2016)

    Article  Google Scholar 

  5. Fick, R.H.J., Wassermann, D., Deriche, R.: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy. Front. Neuroinform. 13, 64 (2019)

    Article  Google Scholar 

  6. Germain, M., Gregor, K., Murray, I., Larochelle, H.: Made: masked autoencoder for distribution estimation. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 881–889. PMLR (2015)

    Google Scholar 

  7. Geyer, S., Schleicher, A., Zilles, K.: Areas 3a, 3b, and 1 of human primary somatosensory cortex. NeuroImage 10(1), 63–83 (1999)

    Article  Google Scholar 

  8. Greenberg, D., Nonnenmacher, M., Macke, J.: Automatic posterior transformation for likelihood-free inference. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 2404–2414. PMLR (2019)

    Google Scholar 

  9. Menon, V., et al.: Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. eLife 9, e53470 (2020)

    Article  Google Scholar 

  10. Mitra, P.P., Latour, L.L., Kleinberg, R.L., Sotak, C.H.: Pulsed-field-gradient NMR measurements of restricted diffusion and the return-to-origin probability. J. Magn. Reson. 114, 47–58 (1995)

    Article  Google Scholar 

  11. Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR in Biomed. 32, e3998 (2018)

    Article  Google Scholar 

  12. Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage 174, 518–538 (2018)

    Article  Google Scholar 

  13. Palombo, M., et al.: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage 215, 116835 (2020)

    Article  Google Scholar 

  14. Papamakarios, G., Nalisnick, E.T., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. arXiv arXiv:1912.02762 (2019)

  15. Setsompop, K., et al.: Pushing the limits of in vivo diffusion MRI for the human connectome project. Neuroimage 80, 220–233 (2013)

    Article  Google Scholar 

  16. Sisson, S.A.: Handbook of Approximate Bayesian Computation. Chapman and Hall/CRC (September 2018)

    Google Scholar 

  17. Veraart, J., et al.: Noninvasive quantification of axon radii using diffusion MRI. eLife 9, e49855 (2020)

    Article  Google Scholar 

  18. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC-StG NeuroLang ID:757672 and the ANR BrAIN grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maëliss Jallais , Pedro L. C. Rodrigues , Alexandre Gramfort or Demian Wassermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jallais, M., Rodrigues, P.L.C., Gramfort, A., Wassermann, D. (2021). Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics