Abstract
Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring six relatively sparse b-shells. These requirements are a drastic reduction of those used in current proposals to estimate grey matter cytoarchitecture. We then apply current tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our LFI-based algorithm yields not only an estimation of the parameter vector \(\boldsymbol{\theta }\) that best describes a given observed data point \(\boldsymbol{x_o}\), but also a full posterior distribution \(p(\boldsymbol{\theta }|\boldsymbol{x}_o)\) over the parameter space. This enables a richer description of the model inversion results providing indicators such as confidence intervals for the estimations, and better understanding of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline to the HCP MGH dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allman, J.M., et al.: The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct. Funct. 214, 495–517 (2010)
Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H.B., Zilles, K.: Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412(2), 319–341 (1999)
Balinov, B., Jönsson, B., Linse, P., Söderman, O.: The NMR self-diffusion method applied to restricted diffusion. Simulation of echo attenuation form molecules in spheres and between planes. J. Magn. Reson. Ser. A 104(1), 17–25 (1993)
Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385 (2016)
Fick, R.H.J., Wassermann, D., Deriche, R.: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy. Front. Neuroinform. 13, 64 (2019)
Germain, M., Gregor, K., Murray, I., Larochelle, H.: Made: masked autoencoder for distribution estimation. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 881–889. PMLR (2015)
Geyer, S., Schleicher, A., Zilles, K.: Areas 3a, 3b, and 1 of human primary somatosensory cortex. NeuroImage 10(1), 63–83 (1999)
Greenberg, D., Nonnenmacher, M., Macke, J.: Automatic posterior transformation for likelihood-free inference. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 2404–2414. PMLR (2019)
Menon, V., et al.: Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. eLife 9, e53470 (2020)
Mitra, P.P., Latour, L.L., Kleinberg, R.L., Sotak, C.H.: Pulsed-field-gradient NMR measurements of restricted diffusion and the return-to-origin probability. J. Magn. Reson. 114, 47–58 (1995)
Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G.: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation. NMR in Biomed. 32, e3998 (2018)
Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage 174, 518–538 (2018)
Palombo, M., et al.: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage 215, 116835 (2020)
Papamakarios, G., Nalisnick, E.T., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. arXiv arXiv:1912.02762 (2019)
Setsompop, K., et al.: Pushing the limits of in vivo diffusion MRI for the human connectome project. Neuroimage 80, 220–233 (2013)
Sisson, S.A.: Handbook of Approximate Bayesian Computation. Chapman and Hall/CRC (September 2018)
Veraart, J., et al.: Noninvasive quantification of axon radii using diffusion MRI. eLife 9, e49855 (2020)
Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)
Acknowledgements
This work was supported by the ERC-StG NeuroLang ID:757672 and the ANR BrAIN grants.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jallais, M., Rodrigues, P.L.C., Gramfort, A., Wassermann, D. (2021). Cytoarchitecture Measurements in Brain Gray Matter Using Likelihood-Free Inference. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-78191-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78190-3
Online ISBN: 978-3-030-78191-0
eBook Packages: Computer ScienceComputer Science (R0)