iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-72699-7_36
Improving Distributed Neuroevolution Using Island Extinction and Repopulation | SpringerLink
Skip to main content

Improving Distributed Neuroevolution Using Island Extinction and Repopulation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12694))

Abstract

Neuroevolution commonly uses speciation strategies to better explore the search space of neural network architectures. One such speciation strategy is the use of islands, which are also popular in improving the performance of distributed evolutionary algorithms. However, islands may experience stagnation, which prevents their convergence towards better solutions and can result in wasted computation. This work evaluates utilizing an island extinction and repopulation mechanism to avoid premature convergence using Evolutionary eXploration of Augmenting Memory Models (EXAMM), an asynchronous island based neuroevolution algorithm that progressively evolves recurrent neural networks (RNNs). In island extinction and repopulation, all members of the worst performing island are erased periodically and repopulated with mutated versions of the global best RNN. This island based strategy is additionally compared to NEAT’s (NeuroEvolution of Augmenting Topologies) speciation strategy. Experiments were performed using two different real-world time series datasets (coal-fired power plant and aviation flight data). With statistical significance, results show that in addition to being more scalable, this island extinction and repopulation strategy evolves better global best genomes than both EXAMM’s original island based strategy and NEAT’s speciation strategy. The extinction and repopulation strategy is easy to implement, and can be generically applied to other neuroevolution algorithms.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Combustion Systems under Award Number #FE0031547 and by the Federal Aviation Administration and MITRE Corporation under the National General Aviation Flight Information Database (NGAFID) award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These data sets are made publicly available at EXAMM GitHub repository: https://github.com/travisdesell/exact/tree/master/datasets/ for reproduction of these results.

References

  1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

  2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  3. Collins, J., Sohl-Dickstein, J., Sussillo, D.: Capacity and trainability in recurrent neural networks. arXiv preprint arXiv:1611.09913 (2016)

  4. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Biological invasion-inspired migration in distributed evolutionary algorithms. Inf. Sci. 207, 50–65 (2012)

    Article  Google Scholar 

  5. Desell, T., ElSaid, A., Ororbia, A.G.: An empirical exploration of deep recurrent connections using neuro-evolution. In: The 23nd International Conference on the Applications of Evolutionary Computation (EvoStar: EvoApps 2020), Seville, Spain, April 2020

    Google Scholar 

  6. ElSaid, A.E.R., Ororbia, A.G., Desell, T.J.: Ant-based neural topology search (ANTS) for optimizing recurrent networks. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 626–641. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_40

    Chapter  Google Scholar 

  7. Fuqua, L.M., Bralower, T.J., Arthur, M.A., Patzkowsky, M.E.: Evolution of calcareous nannoplankton and the recovery of marine food webs after the cretaceous-paleocene mass extinction. Palaios 23(4), 185–194 (2008)

    Article  Google Scholar 

  8. Gallala, N., Zaghbib-Turki, D., Arenillas, I., Arz, J.A., Molina, E.: Catastrophic mass extinction and assemblage evolution in planktic foraminifera across the Cretaceous/Paleogene (K/PG) boundary at Bidart (SW France). Mar. Micropaleontol. 72(3–4), 196–209 (2009)

    Article  Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. Aistats 9, 249–256 (2010)

    Google Scholar 

  10. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, Hillsdale, NJ, pp. 41–49. Lawrence Erlbaum (1987)

    Google Scholar 

  11. Greewood, G., Fogel, G.B., Ciobanu, M.: Emphasizing extinction in evolutionary programming. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1, pp. 666–671. IEEE (1999)

    Google Scholar 

  12. Grefenstette, J.J., et al.: Genetic algorithms for changing environments. In: PPSN, vol. 2, pp. 137–144. Citeseer (1992)

    Google Scholar 

  13. Hadjiivanov, A., Blair, A.: Complexity-based speciation and genotype representation for neuroevolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3092–3101. IEEE (2016)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  15. Hernández, A., Botello, S., et al.: Repairing normal EDAs with selective repopulation. Appl. Math. Comput. 230, 65–77 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: International Conference on Machine Learning, pp. 2342–2350 (2015)

    Google Scholar 

  18. Knapp, J.S., Peterson, G.L.: Natural evolution speciation for neat. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1487–1493. IEEE (2019)

    Google Scholar 

  19. Krčah, P.: Effects of speciation on evolution of neural networks in highly dynamic environments. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 425–430. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_39

    Chapter  Google Scholar 

  20. Krink, T., Thomsen, R.: Self-organized criticality and mass extinction in evolutionary algorithms. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 1155–1161. IEEE (2001)

    Google Scholar 

  21. Lehman, J., Miikkulainen, R.: Enhancing divergent search through extinction events. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 951–958 (2015)

    Google Scholar 

  22. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  23. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.: A survey on evolutionary neural architecture search. arXiv preprint arXiv:2008.10937 (2020)

  24. Mathias, H.D., Ragusa, V.R.: An empirical study of crossover and mass extinction in a genetic algorithm for pathfinding in a continuous environment. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4111–4118. IEEE (2016)

    Google Scholar 

  25. Newman, M., Roberts, B.W.: Mass extinction: evolution and the effects of external influences on unfit species. Proc. Royal Soc. London. Ser. B: Biol. Sci. 260(1357), 31–37 (1995)

    Google Scholar 

  26. Ororbia, A., ElSaid, A., Desell, T.: Investigating recurrent neural network memory structures using neuro-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO 2019, pp. 446–455. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3321707.3321795

  27. Ororbia II, A.G., Mikolov, T., Reitter, D.: Learning simpler language models with the differential state framework. Neural Comput. 1–26 (2017). https://doi.org/10.1162/neco_a_01017, pMID: 28957029

  28. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  29. Rochester Institute of Technology: research computing services (2019). https://doi.org/10.34788/0S3G-QD15, https://www.rit.edu/researchcomputing/

  30. Spears, W.: Speciation using tag bits. Handbook of Evolutionary Computation (1995)

    Google Scholar 

  31. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  32. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

    Article  Google Scholar 

  33. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  34. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol. Comput. 24, 394–407 (2019)

    Google Scholar 

  35. Trujillo, L., Olague, G., Lutton, E., Fernández de Vega, F.: Discovering several robot behaviors through speciation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 164–174. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78761-7_17

    Chapter  Google Scholar 

  36. Verbancsics, P., Stanley, K.O.: Evolving static representations for task transfer. J. Mach. Learn. Res. 11(May), 1737–1769 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wan, J., Chu, P., Jiao, Y., Li, Y.: Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors Associated Equipment 946, 162683 (2019)

    Google Scholar 

  38. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  39. Xie, X.F., Zhang, W.J., Yang, Z.L.: Hybrid particle swarm optimizer with mass extinction. In: IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 2, pp. 1170–1173. IEEE (2002)

    Google Scholar 

  40. Zhou, G.-B., Wu, J., Zhang, C.-L., Zhou, Z.-H.: Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 13(3), 226–234 (2016). https://doi.org/10.1007/s11633-016-1006-2

    Article  Google Scholar 

Download references

Acknowledgements

Most of the computation of this research was done on the high performance computing clusters of Research Computing at Rochester Institute of Technology [29]. We would like to thank the Research Computing team for their assistance and the support they generously offered to ensure that the heavy computation this study required was available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimeng Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyu, Z., Karns, J., ElSaid, A., Mkaouer, M., Desell, T. (2021). Improving Distributed Neuroevolution Using Island Extinction and Repopulation. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics