Abstract
It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Addington, D., Addington, J., Schissel, B.: A depression rating scale for schizophrenics. Schizophr. Res. 3(4), 247–251 (1990)
Ahmed, A.T., et al.: Mapping depression rating scale phenotypes onto Research Domain Criteria (RDoC) to inform biological research in mood disorders. J. Affect. Disord. 238, 1–7 (2018)
Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Breakspear, M., Parker, G.: Detecting depression: a comparison between spontaneous and read speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7547–7551 (2013a)
Alghowinem, S., et al.: A comparative study of different classifiers for detecting depression from spontaneous speech. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8022–8026 (2013b)
Bornschlegl, M.X., et al.: IVIS4BigData: a reference model for advanced visual interfaces supporting big data analysis in virtual research environments. In: Bornschlegl, Marco X., Engel, F.C., Bond, R., Hemmje, M.L. (eds.) AVI-BDA 2016. LNCS, vol. 10084, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50070-6_1
Almeida, E., Ferruzca, M., del Pilar Morales Tlapanco, M.: Design of a system for early detection and treatment of depression in elderly case study. In: Cipresso, P., Matic, A., Lopez, G. (eds.) MindCare 2014. LNICST, vol. 100, pp. 115–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11564-1_12
Alexopoulos, G.S., Abrams, R.C., Young, R.C., Shamoian, C.A.: Cornell scale for depression in dementia. Biol. Psychiatry 23, 27184 (1988)
Bech, P., Timmerby, N., Martiny, K., Lunde, M., Soendergaard, S.: Psychometric evaluation of the Major Depression Inventory (MDI) as depression severity scale using the LEAD (Longitudinal Expert Assessment of All Data) as index of validity. Psychiatry 15, 190 (2015)
Beck, A.T., Steer, R.A., Brown, G.K.: Manual for the Beck Depression Inventory-II. Psychological Corporation, San Antonio (1996)
Bennabi, D., Vandel, P., Papaxanthis, C., Pozzo, T., Haffen, E.: Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic, and therapeutic implications. BioMed Res. Int. (2013), Article ID 158746, 18 pages (2013). http://dx.doi.org/10.1155/2013/158746
Brown, L., Karmakar, C., Gray, R., Jindal, R., Lim, T., Bryant, C.: Heart rate variability alterations in late life depression: a meta-analysis. J. Affect. Disord. 235, 456–466 (2018)
Cai, H., Qu, Z., Li, Z., Zhang, Y., Hu, X., Hu, B.: Feature-level fusion approaches based on multimodal EEG data for depression recognition. Inf. Fusion 59, 127–138 (2020)
Cordasco, G., Scibelli, F., Faundez-Zanuy, M., Likforman-Sulem, L., Esposito, A.: Handwriting and drawing features for detecting negative moods. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) WIRN 2017 2017. SIST, vol. 103, pp. 73–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95095-2_7
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., Quatieri, T.F.: A review of Depression and suicide risk assessment using speech analysis. Speech Commun. 71, 10–49 (2015)
Cunningham, J.L., Wernroth, L., von Knorring, L., Berglund, L., Ekselius, L.: Agreement between physicians’ and patients’ ratings on the Montgomery-Äsberg Depression Rating Scale. J. Affect. Disord. 135, 148–153 (2011)
Dang, T., et al.: Investigating word affect features and fusion of probabilistic predictions incorporating uncertainty in AVEC 2017. In: Proceedings of the Seventh Annual Workshop on Audio/Visual Emotion Challenge, Mountain View, CA, pp. 27–35 (2017)
da Silva, A.K., Reche, M., da Silva Lima, A.F., de Almeida Fleck, M.P., Edison Capp, E., Milman Shansis, F.: Assessment of the psychometric properties of the 17- and 6-item Hamilton Depression Rating Scales in major depressive disorder, bipolar depression and bipolar depression with mixed features. J. Psychiatr. Res. 108, 84–89 (2019)
Dehaye, M., Leemans, C., Loas, G.: Elderly’s suicide attempt. Rev. Med. Brux. 39, 15–21 (2018)
Dunlop, B.W., McCabe, B., Eudicone, J.M., Sheehan, J.J., Baker, R.A.: How well do clinicians and patients agree on depression treatment outcomes? Implications for personalized medicine. Hum. Psychopharmacol. 29, 528–536 (2014)
Esposito, A., Esposito, A.M., Likforman-Sulem, L., Maldonato, M.N., Vinciarelli, A.: On the significance of speech pauses in depressive disorders: results on read and spontaneous narratives. In: Esposito, A., et al. (eds.) Recent Advances in Nonlinear Speech Processing. SIST, vol. 48, pp. 73–82. Springer, Cham (2016a). https://doi.org/10.1007/978-3-319-28109-4_8
Esposito, A., Esposito, A.M., Vogel, C.: Needs and challenges in human computer interaction for processing social emotional information. Pattern Recogn. Lett. 66, 41–51 (2015)
Esposito, A., Jain, L.C.: Modeling social signals and contexts in robotic socially believable behaving systems. In: Esposito, A., Jain, L.C. (eds.) Toward Robotic Socially Believable Behaving Systems - Volume II. ISRL, vol. 106, pp. 5–11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31053-4_2
Esposito, A., Scibelli, F., Vinciarelli, A.: A pilot study on the decoding of dynamic emotional expressions in major depressive disorder. In: Bassis, S., Esposito, A., Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks. SIST, vol. 54, pp. 189–200. Springer, Cham (2016b). https://doi.org/10.1007/978-3-319-33747-0_19
Freeman, D., Sheaves, B., Goodwin, G.M., Yu, L.M., Nickless, A., Harrison, P.J., Hinds, C.: The effects of improving sleep on mental health (OASIS): a randomized controlled trial with mediation analysis. Lancet Psychiatry 4(10), 749–758 (2017)
Gong, Y., Poellabauer, C.: Topic modeling based on multi-modal depression detection. In: Proceeding of the Seventh Annual Workshop on Audio/Visual Emotion Challenge, Mountain View, CA, pp. 69–76 (2017)
Groholt, B., Ekeberg, Ø.: Prognosis after adolescent suicide attempt: mental health, psychiatric treatment, and suicide attempts in a nine-year follow-up study. Suicide and Life-Threat. Behav. 39(2), 125–136 (2009)
Grover, S., Sahoo, S., Dua, D., Chakrabarti, S., Avasthi, A.: Scales for assessment of depression in schizophrenia: factor analysis of Calgary depression rating scale and Hamilton depression rating scale. Psychiatry Res. 252(2017), 333–339 (2017)
Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960)
Hamilton, M.: Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 6, 278–296 (1967)
Hershenberg, R., et al.: Concordance between clinician-rated and patient reported outcome measures of depressive symptoms in treatment resistant depression. J. Affect. Disord. 266, 22–29 (2020)
Horwitz, A.V.: How an age of anxiety became an age of depression. Milbank Q. 88(1), 112–138 (2010)
Jiang, H., et al.: Investigation of different speech types and emotions for detecting Depression using different classifiers. Speech Commun. 90, 39–46 (2017)
Kemp, A.H., Quintana, D.S., Gray, M.A., Felmingham, K.L., Brown, K., Gatt, J.M.: Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiat. 67(11), 1067–1074 (2010)
Kiss, G., Tulics, M.G., Sztahó, D., Esposito, A., Vicsi, K.: Language independent detection possibilities of depression by speech. In: Esposito, A., et al. (eds.) Recent Advances in Nonlinear Speech Processing. SIST, vol. 48, pp. 103–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28109-4_11
Kroenke, K., Spitzer, R., Williams, J.: The PHQ-9. Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001)
Landin, R., DeBrota, D.J., DeVries, T.A., Potter, W.Z., Demitrack, M.A.: The impact of restrictive entry criterion during the placebo lead-in period. Biometrics 56(1), 271–278 (2000)
Lewinsohn, P.M., Seeley, J.R., Roberts, R.E., Allen, N.B.: Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol. Aging 12(2), 277–287 (1997)
Likforman-Sulem, L., Esposito, A., Faundez-Zanuy, M., Clémençon, S., Cordasco, G.: EMOTHAW: a novel database for emotional state recognition from handwriting and drawing. IEEE Trans. Hum.-Mach. Syst. 47(2), 273–284 (2017). http://ieeexplore.ieee.org/document/7807324/
Lovibond, P.F., Lovibond, S.H.: The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Therapy 33(3), 335–343 (1995)
Marazziti, D., Consoli, G., Picchetti, M., Carlini, M., Faravelli, L.: Cognitive impairment in major depression. Eur. J. Pharmacol. 626, 83–86 (2010)
Mendiratta, A., et al.: Automatic detection of depressive states from speech. In: Esposito, A., Faudez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Multidisciplinary Approaches to Neural Computing. SIST, vol. 69, pp. 301–314. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56904-8_29
Moirand, R., Galvao, F., Brunelin, J.: Early shifts of emotional attention as a possible predictor of remission in patients with depression receiving ECT: preliminary results of an eye-tracker study. L’Encéphale 45(2), 73 (2019)
Möller, H.J.: Rating depressed patients: observer- vs self-assessment. Eur. Psychiatry 15, 160–172 (2000)
Montgomery, S.A., Äsberg, M.: A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389 (1979)
Mundt, J.C., Vogel, A.P., Feltner, D.E., Lenderking, W.R.: Vocal acoustic biomarkers of depression severity and treatment response. Biol. Psychiatry 72, 580–587 (2012)
Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H.U., Jonsson, B.: The economic cost of brain disorders in Europe. Eur. J. Neurol. 19(1), 155–162 (2012)
Rabinowitz, J., et al.: Consistency checks to improve measurement with the Montgomery-Äsberg Depression Rating Scale (MADRS). J. Affect. Disord. 256, 143–147 (2019)
Reis, T., Bornschlegl, M.X., Hemmje, M.L.: Towards a reference model for artificial intelligence supporting big data analysis. In: Proceedings of the 2020 International Conference on Data Science (ICDATA 2020) (2020)
Ringeval, F., et al.: AVEC 2017 – Real-life depression, and affect recognition workshop and challenge. In: Proceedings of the 7th International Workshop on Audio/Visual Emotion Challenge (AVEC), co-located with the 25th ACM International Conference on Multimedia (ACM MM), pp. 3–9. ACM, Mountain View (2017)
Ringeval, F., et al.: AV+EC 2015 – The first affect recognition challenge bridging across audio, video, and physiological data. In: Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge (AVEC), co-located with the ACM International Conference on Multimedia (ACM MM), pp. 3–8. ACM, Brisbane (2015)
Ringeval, F., et al.: 2018 AVEC 2018 workshop and challenge: bipolar disorder and cross-cultural affect recognition. In: Proceedings of the 8th International Workshop on Audio/Visual Emotion Challenge (AVEC), co-located with the 26th ACM International Conference on Multimedia (ACM MM), Seoul, Republic of Korea, 22 October 2018
Rohan, K.J., et al.: A protocol for the Hamilton Rating Scale for Depression: Item scoring rules, Rater training, and outcome accuracy with data on its application in a clinical trial. J. Affect. Disord. 200, 111–118 (2016)
Rush, A.J., et al.: The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 54, 573–583 (2003)
Rush, A.J., et al.: An evaluation of the quick inventory of depressive symptomatology and the Hamilton Rating Scale for Depression: a sequenced treatment alternative to relieve depression trial report. Biol. Psychiatry 59, 493–501 (2006)
Sanchez-Lopez, A., Koster, E.H.W., Put, J.V., De Raedt, R.: Attentional disengagement from emotional information predicts future depression via changes in ruminative brooding: a five-month longitudinal eye-tracking study. Behav. Res. Ther. 118, 30–42 (2019)
Scibelli, F., Troncone, A., Likforman-Sulem, L., Vinciarelli, A., Esposito, A.: How major depressive disorder affects the ability to decode multimodal dynamic emotional stimuli. Frontiers (2016). https://doi.org/10.3389/fict.2016.00016. IN ICT, vol. 3, ISSN 2297-198X
Scibelli, F., et al.: Depression speaks: automatic discrimination between depressed and non-depressed speakers based on nonverbal speech features. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6842–6846, Calgary, AB, Canada, 15–20 April 2018 (2018)
Scherer, S., Stratou, G., Gratch, J., Morency, L.: Investigating voice quality as a speaker-independent indicator of depression and PTSD. In: Proceedings of Interspeech. ISCA, Lyon, France, pp. 847–851 (2013b)
Shirazian, S., Grant, C.D., Aina, O., Mattana, J., Khorassani, F., Ricardo, A.C.: Depression in chronic kidney disease and end-stage renal disease: similarities and differences in diagnosis, epidemiology, and management. Kidney Int. Rep. 2(1), 94–107 (2016). https://doi.org/10.1016/j.ekir.2016.09.005. Published 20 Sept 2016
Stasak, B., Epps, J., Goecke, R.: Elicitation design for acoustic depression classification: an investigation of articulation effort, linguistic complexity, and word affect. In: Proceedings of INTERSPEECH Conference, Stockholm, Sweden, pp. 834–838 (2017a)
Stasak, B., Epps, J., Lawson, A.: Analysis of phonetic markedness and gestural effort measures for acoustic speech-based depression classification. In: Proceedings of the ACII Conference, Parramatta, Australia, pp. 1–6 (2017b)
Stasak, B., Epps, J., Goecke, R.: An investigation of linguistic stress and articulatory vowel characteristics for automatic depression classification. Comput. Speech Lang. 53, 140–155 (2019)
Thibodeau, R., Jorgensen, S.R., Kim, S.: Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J. Abnorm. Psychol. 115, 4 (2006)
Tolgay, B., Dell’Orco, S., Maldonato, M.N., Vogel Carl Trojano L., Esposito, A.: EEGs as potential predictors of virtual agent’s’ acceptance. In Proceedings of 10th IEEE International Conference in Cognitive Infocommunication, Naples, 23–25 October 2019 (2020)
Tolton, D., Steffens, D., Chan, G.: Patient versus clinician rated depression scores: a comparison of participant scores on the Carroll Depression Scale and the Hamilton Depression Rating Scale. Am. J. Geriatric Psychiatry 27(3)S 124–125 (2019)
Torbey, E., Pachana, N.A., Dissanayaka, N.N.W.: Depression rating scales in Parkinson’s disease: a critical review updating recent literature. J. Affect. Disord. 184, 216–224 (2015)
Troncone, A., Palumbo, D., Esposito, A.: Mood effects on the decoding of emotional voices. In: Bassis, S., Esposito, A., Morabito, F.C. (eds.) Recent Advances of Neural Network Models and Applications. SIST, vol. 26, pp. 325–332. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04129-2_32
Vahey, R., Becerra, R.: Galvanic skin response in mood disorders: a critical review. Int. J. Psychol. Psychol. Ther. 15(2), 275–304 (2015)
Valstar, M., Schuller, B., Krajewski, J., Cowie, R., Pantic, M.: AVEC 2013, Workshop summary for the 3rd International Audio/Visual Emotion Challenge and Workshop (AVEC 2013). In: Proceedings of the MM, Barcelona, Spain, October 2013, pp. 1085–1086. ACM (2013)
Valstar, M., Schuller, B., Krajewski, J., Cowie, R., Pantic, M.: AVEC 2014: The 4th International Audio/Visual Emotion Challenge and Workshop. In: Proceedings of the MM, Orlando (FL), USA, November 2014, pp. 1243–1244. ACM (2014)
Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Cowie, R., Pantic, M.: AVEC 2016. Summary for AVEC 2016: depression, mood, and emotion recognition workshop and challenge. In: Proceedings of the 24th ACM International Conference on Multimedia (ACM MM), pp. 1483–1484. ACM, Amsterdam (2016)
Yates, W.R.: Clinical features of depression in outpatients with and without co-occurring general medical conditions in STAR* D: Confirmatory analysis. Primary Care Companion J. Clin. Psychiatry 9(1), 7–15 (2007)
Ypsilanti, A., Robson, A., Lazuras, L., Powell, P.A., Overton, P.G.: Self-disgust, loneliness and mental health outcomes in older adults: an eye-tracking study. J. Affect. Disord. 2661, 646–665 (2020)
Yeasavage, J.A., et al.: Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 3749 (1983)
Watson, B., Tatangelo, G., McCabe, M.: Depression and anxiety among partner and offspring carers of people with dementia: a systematic review. The Gerontologist 59(5), e597–e610 (2019)
Wechsler, H., Grosser, G.H., Busfield, B.L.: The depression rating scale. Arch. Gen. Psychiatry 9, 334–343 (1963)
Williamson, J.R., et al.: Detecting depression using vocal, facial, and semantic communication cues. In: Proceedings of the Sixth International Workshop on Audio/Visual Emotion Challenge (AVEC), Amsterdam, The Netherlands, pp. 11–18 (2016)
Zimmerman, M., Chelminski, I., McGlinchey, J.B., Posternak, M.A.: A clinically useful depression outcome scale. Compr. Psychiatry 49, 131–140 (2008)
Zimmerman, M., Walsh, E., Friedman, M., Boerescu, D.A., Attiullah, A.: Are self-report scales as effective as clinician rating scales in measuring treatment response in routine clinical practice? J. Affect. Disord. 225, 449–452 (2018)
Zung, W.W.K.: Self-rating depression scale. Arch. Gen. Psychiatry 12, 63–70 (1965)
Acknowledgements
The research leading to these results has received funding from the EU H2020 under grant agreement N. 769872 (EMPATHIC) and 823907 (MENHIR), and from the Italian projects SIROBOTICS, MIUR, PNR 2015-2020, DD1735, 13/07/2017, and ANDROIDS, V:ALERE, UniCampania, D.R. 906 del 4/10/2019, prot. 157264, 17/10/2019. 7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Esposito, A., Callejas, Z., Hemmje, M.L., Fuchs, M., Maldonato, M.N., Cordasco, G. (2021). Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing. In: Reis, T., Bornschlegl, M.X., Angelini, M., Hemmje, M.L. (eds) Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. AVI-BDA ITAVIS 2020 2020. Lecture Notes in Computer Science(), vol 12585. Springer, Cham. https://doi.org/10.1007/978-3-030-68007-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-68007-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68006-0
Online ISBN: 978-3-030-68007-7
eBook Packages: Computer ScienceComputer Science (R0)