iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-66843-3_2
Automatic Tissue Segmentation with Deep Learning in Patients with Congenital or Acquired Distortion of Brain Anatomy | SpringerLink
Skip to main content

Automatic Tissue Segmentation with Deep Learning in Patients with Congenital or Acquired Distortion of Brain Anatomy

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Brains with complex distortion of cerebral anatomy present several challenges to automatic tissue segmentation methods of T1-weighted MR images. First, the very high variability in the morphology of the tissues can be incompatible with the prior knowledge embedded within the algorithms. Second, the availability of MR images of distorted brains is very scarce, so the methods in the literature have not addressed such cases so far. In this work, we present the first evaluation of state-of-the-art automatic tissue segmentation pipelines on T1-weighted images of brains with different severity of congenital or acquired brain distortion. We compare traditional pipelines and a deep learning model, i.e. a 3D U-Net trained on normal-appearing brains. Unsurprisingly, traditional pipelines completely fail to segment the tissues with strong anatomical distortion. Surprisingly, the 3D U-Net provides useful segmentations that can be a valuable starting point for manual refinement by experts/neuroradiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://research.cchmc.org/c-mind, NIH contract #s HHSN275200900018C.

  2. 2.

    http://pediatricmri.nih.gov.

  3. 3.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat.

  4. 4.

    https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all.

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. NeuroImage 11(6 Pt 1), 805–821 (2000). https://doi.org/10.1006/nimg.2000.0582

    Article  Google Scholar 

  2. Avants, B., Tustison, N., Wang, D.J.: The Pediatric Template of Brain Perfusion (PTBP) (2015). https://doi.org/10.6084/m9.figshare.923555.v20

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Cullen, N.C., Avants, B.B.: Convolutional neural networks for rapid and simultaneous brain extraction and tissue segmentation. In: Spalletta, G., Piras, F., Gili, T. (eds.) Brain Morphometry. N, vol. 136, pp. 13–34. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7647-8_2

    Chapter  Google Scholar 

  5. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis I. Segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999). https://doi.org/10.1006/nimg.1998.0395

    Article  Google Scholar 

  6. Evans, A.C.: The NIH MRI study of normal brain development. NeuroImage 30(1), 184–202 (2006). https://doi.org/10.1016/j.neuroimage.2005.09.068

    Article  MathSciNet  Google Scholar 

  7. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  Google Scholar 

  8. Ledig, C., et al.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015). https://doi.org/10.1016/j.media.2014.12.003

    Article  Google Scholar 

  9. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015)

    Google Scholar 

  10. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016). https://doi.org/10.1109/TMI.2016.2548501

    Article  Google Scholar 

  11. Rajchl, M., Pawlowski, N., Rueckert, D., Matthews, P.M., Glocker, B.: NeuroNet: Fast and Robust Reproduction of Multiple Brain Image Segmentation Pipelines (2018)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Roy, S., et al.: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J. Biomed. Health Inf. 19(5), 1598–1609 (2015). https://doi.org/10.1109/JBHI.2015.2439242

    Article  Google Scholar 

  14. Shao, M., et al.: Brain ventricle parcellation using a deep neural network: application to patients with ventriculomegaly. NeuroImage Clin. 23, 101871 (2019). https://doi.org/10.1016/j.nicl.2019.101871

  15. Tustison, N.J., et al.: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. NeuroImage 99, 166–179 (2014). https://doi.org/10.1016/j.neuroimage.2014.05.044

    Article  Google Scholar 

  16. Yogananda, C.G.B., Wagner, B.C., Murugesan, G.K., Madhuranthakam, A., Maldjian, J.A.: A deep learning pipeline for automatic skull stripping and brain segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 727–731 (2019). https://doi.org/10.1109/ISBI.2019.8759465, iSSN: 1945-7928

Download references

Acknowledgment

Data used in the preparation of this article were obtained from the C-MIND Data Repository created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by Cincinnati Children’s Hospital Medical Center and UCLA and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). A listing of the participating sites and a complete listing of the study investigators can be found at https://research.cchmc.org/c-mind. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Olivetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amorosino, G. et al. (2020). Automatic Tissue Segmentation with Deep Learning in Patients with Congenital or Acquired Distortion of Brain Anatomy. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics