Abstract
Bioinformatics is an interdisciplinary research field that aims to analyze biological data through computational approaches. In the last years, the evolution of technological resources has provided a tidal wave of biological data. Consequently, an unprecedented amount of studies using bioinformatics approaches have been released, increasing peer-reviewed published papers. Here, we tell a brief history of bioinformatics based on literature data analysis and visualization. We collected abstracts and other metadata from papers published from 1998 to 2019 in four leading bioinformatics journals: (i) Oxford Bioinformatics; (ii) BMC Bioinformatics; (iii) Briefings in Bioinformatics; and (iv) PLoS Computational Biology. Our results show an increase in publication number and international collaborations. We also observed an increase in publications by Chinese authors. Latin America continues to have a low percentage of global scientific bioinformatics production. However, Brazil excels in this region, being responsible for almost half of Latin America papers published. Our results also point out the recent trend of using Python as the programming language for bioinformatics applications, followed by Perl, Java, and R. We hope these data visualizations can provide insights to understand the recent changes and evolution in the bioinformatics field. The developed interactive visualizations are available at http://bioinfo.dcc.ufmg.br/history/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akalin, P.K.: Introduction to bioinformatics. Mol. Nutr. Food Res. 50, 610–619 (2006)
Hagen, J.B.: The origins of bioinformatics. Nat. Rev. Genet. 1, 231–236 (2000)
Moore, S., Spackman, D.H., Stein, W.H.: Automatic recording apparatus for use in the chromatography of amino acids, pp. 1107–1115 (1958)
Dayhoff, M.O.: Atlas of protein sequence and structure. National Biomedical Research Foundation (1972)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Molecular Biol. 48, 443–453 (1970)
Levinthal, C.: Molecular model-building by computer. Sci. Am. 214, 42–52 (1966)
Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)
Stephen, F., Altschu, P., Warren, G., Webb, M., Eugene, W., Myers, David, J.L.: Basic Local Alignment Search Tool (1990)
Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. National Acad. Sci. 74, 5463–5467 (1977)
Staden, R.: A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 6, 2601–2610 (1979)
Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)
Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., et al.: The genome sequence of drosophila melanogaster. Science 287, 2185–2195 (2000)
Mariano, D.C.B., Pereira, F.L., Aguiar, E.L., Oliveira, L.C., Benevides, L., Guimarães, L.C., et al.: SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology. BMC Bioinform. 17(Suppl 18), 456 (2016)
It’s sink or swim as a tidal wave of data approaches. Nature, 399, 517 (1999)
Gauthier, J., Vincent, A.T., Charette, S.J., Derome, N.: A brief history of bioinformatics. Brief. Bioinform. 20, 1981–1996 (2019)
Hogeweg, P.: The Roots of Bioinformatics in Theoretical Biology. PLoS Comput. Biol. 7, e1002021 (2011)
Canese, K., Weis, S.: PubMed: The Bibliographic Database. National Center for Biotechnology Information (US) (2013). https://www.ncbi.nlm.nih.gov/books/NBK153385/. Accessed 14 Sep 2020
NCBI Resource Coordinators: Database resources of the national center for biotechnology information. Nucleic Acids Res. 46, D8–D13 (2018)
Monastersky, R., Noorden, R.V.: 150 years of nature: a data graphic charts our evolution. Nature 575, 22–23 (2019)
Carey, V.J., Gentry, J., Whalen, E., Gentleman, R.: Network structures and algorithms in Bioconductor. Bioinformatics 21, 135–136 (2005)
Chen, H., Lau, M.C., Wong, M.T., Newell, E.W., Poidinger, M., Chen, J.: Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput. Biol. 12, e1005112 (2016)
Fournier, F., Joly Beauparlant, C., Paradis, R., Droit, A.: rTANDEM, an R/Bioconductor package for MS/MS protein identification. Bioinformatics 30, 2233–2234 (2014)
Gådin, J.R., van’t Hooft, F.M., Eriksson, P., Folkersen, L.: AllelicImbalance: an R/ bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing. BMC Bioinform. 16, 194 (2015)
Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004)
Talevich, E., Invergo, B.M., Cock, P.J., Chapman, B.A.: Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinform. 13, 209 (2012)
Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., et al.: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)
Sun, X., Hu, B.: Mathematical modeling and computational prediction of cancer drug resistance. Brief. Bioinform. 19, 1382–1399 (2018)
Sethi, A., Tian, J., Derdeyn, C.A., Korber, B., Gnanakaran, S.: A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein. PLoS Comput. Biol. 9, e1003046 (2013)
Costa, L.S.C., Mariano, D.C.B., Rocha, R.E.O., Kraml, J., da Silveira, C.H., Liedl, K.R., et al.: Molecular dynamics gives new insights into the glucose tolerance and inhibition mechanisms on β-glucosidases. Molecules 24, 3215 (2019)
Lima, L.H.F., de Fernandez-Quintéro, M., Rocha, R.E.O., Mariano, D.C.B., Melo-Minardi, R.C., de Liedl, K.R.: Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases – a computational study. J. Biomolecular Structure Dyn. 1–20 (2020)
Russell, P.H., Johnson, R.L., Ananthan, S., Harnke, B., Carlson, N.E.: A large-scale analysis of bioinformatics code on GitHub. PLoS ONE 13, e0205898 (2018)
Ekmekci, B., McAnany, C.E., Mura, C.: An Introduction to Programming for Bioscientists: A Python-Based Primer. PLoS Comput. Biol. 12, e1004867 (2016)
Mariano, D., Martins, P., Helene Santos, L., de Melo- Minardi, R.C.: Introducing Programming Skills for Life Science Students. Biochemistry and Molecular Biology Education (2019). https://doi.org/10.1002/bmb.21230
Acknowledgments
The authors thank the funding agencies: CAPES, FAPEMIG, and CNPq. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Project grant number 51/2013 - 23038.004007/2014-82.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mariano, D., Ferreira, M., Sousa, B.L., Santos, L.H., de Melo-Minardi, R.C. (2020). A Brief History of Bioinformatics Told by Data Visualization. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-65775-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65774-1
Online ISBN: 978-3-030-65775-8
eBook Packages: Computer ScienceComputer Science (R0)