iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-63955-6_21
Simulation Training Remote Control System of Industrial Robot Based on Deep Learning | SpringerLink
Skip to main content

Simulation Training Remote Control System of Industrial Robot Based on Deep Learning

  • Conference paper
  • First Online:
e-Learning, e-Education, and Online Training (eLEOT 2020)

Abstract

In order to improve the remote control performance of industrial robot simulation training, deep learning algorithm is used to optimize the design of traditional remote control system. On the basis of traditional remote control system, the configuration of hardware system is modified, and the database of control system is established. With the support of hardware system and database, the remote control of two training items of industrial robot simulation mobile training and simulation picking training are realized respectively. Through the system test experiment, the conclusion is drawn: compared with the traditional industrial robot remote control system, the control function of the design control system is improved, and the system can save about 12.5 s response time in the control process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Z., Huang, G., Gao, J., et al.: Radar emitter identification algorithm based on deep learning. J. Xidian Univ. 44(3), 77–82 (2017)

    Google Scholar 

  2. Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic and deep learning algorithm. Neural Netw. Off. J. Int. Neural Netw. Soc. 118, 310 (2019)

    Article  Google Scholar 

  3. Keqiang, B., Zhigui, L., Yingtong, W.: An integrated design method coupling structure and control for industrial robot. Sci. Technol. Rev. 36(9), 91–96 (2018)

    Google Scholar 

  4. Vuthi, Y., Wangyao, N., Phamvan, C.: Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput. Appl. 31(18), 1–14 (2018)

    Google Scholar 

  5. Rosa, D.G.G., Feiteira, J.F.S., Lopes, A.M., et al.: Analysis and implementation of a force control strategy for drilling operations with an industrial robot. J. Braz. Soc. Mech. Sci. Eng. 39(1), 1–8 (2017)

    Article  Google Scholar 

  6. Xiuxing, Y., Li, P.: Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy. ISA Trans. 72, 178–184 (2017)

    Google Scholar 

  7. de Gea Fernández, J., Mronga, D., Günther, M., et al.: Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings. Robot. Auton. Syst. 94, 102–119 (2017)

    Article  Google Scholar 

  8. Santos, J., André, C., Santos, T., et al.: Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation. Mechatronics 52 (2018)

    Google Scholar 

  9. Lee, D., Lee, J.: A hybrid joystick with impedance control for a stable remote control of a mobile robot. Int. J. Human. Robot. 16(1) (2019)

    Google Scholar 

  10. Santos Lopesdos, M.S., Gomes, I.P., Trindade, R.M., et al.: Web environment for programming and control of a mobile robot in a remote laboratory. IEEE Trans. Learn. Technol. 10(4), 526–531 (2017)

    Article  Google Scholar 

Download references

Funding

Key topics of Beijing Polytechnic, Research and design of equipment management system based on RFID (CJGX2016-KY-YZK041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Fei Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, D., Qu, M.F. (2020). Simulation Training Remote Control System of Industrial Robot Based on Deep Learning. In: Liu, S., Sun, G., Fu, W. (eds) e-Learning, e-Education, and Online Training. eLEOT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 340. Springer, Cham. https://doi.org/10.1007/978-3-030-63955-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63955-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63954-9

  • Online ISBN: 978-3-030-63955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics