Abstract
The application of image processing techniques to individual frames of video often results in temporal inconsistency. Conventional approaches used for preserving the temporal consistency in videos have shortcomings as they are used for only particular jobs. Our work presents a multipurpose video temporal consistency preservation method that utilizes an adaptive simple linear iterative clustering (SLIC) algorithm. First, we locate the inter-frame correspondent pixels through the SIFT Flow and use them to find the respective regions. Then, we apply a multiframe matching statistical method to get the spatially or temporally correspondent frames. Besides, we devise a least-squares energy-based flickering-removing objective function by taking into account the inter-frame temporal consistency and inter-region spatial consistency jointly. The obtained results demonstrate the potential of the proposed method.
H. Zhang and R. Ali—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonneel, N., Sunkavalli, K., Paris, S., Pfister, H.: Example-based video color grading. ACM Trans. Graph. 32(4), 39:1–39:12 (2013)
Bonneel, N., Sunkavalli, K., Tompkin, J., Sun, D., Paris, S., Pfister, H.: Interactive intrinsic video editing. ACM Trans. Graph. 33(6), 197:1–197:10 (2014)
Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind video temporal consistency. ACM Trans. Graph. 34(6), 196:1–196:9 (2015)
Chen, A.Y.C., Corso, J.J.: Propagating multi-class pixel labels throughout video frames. In: Western New York Image Processing Workshop, pp. 14–17 (2010)
Dong, X., Bonev, B., Zhu, Y., Yuille, A.L.: Region-based temporally consistent video post-processing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 714–722 (2015)
Farbman, Z., Lischinski, D.: Tonal stabilization of video. ACM Trans. Graph. 30(4), 89:1–89:10 (2011)
Hsu, C.Y., Lu, C.S., Pei, S.C.: Video halftoning preserving temporal consistency. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1938–1941 (2007)
Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1819 (2019)
Karambakhsh, A., Kamel, A., Sheng, B., Li, P., Yang, P., Feng, D.D.: Deep gesture interaction for augmented anatomy learning. Int. J. Inf. Manag. 45, 328–336 (2019). https://doi.org/10.1016/j.ijinfomgt.2018.03.004. http://www.sciencedirect.com/science/article/pii/S0268401217308678
Lang, M., Wang, O., Aydin, T., Smolic, A., Gross, M.: Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. 31(4), 34:1–34:8 (2012)
Li, C., Chen, Z., Sheng, B., Li, P., He, G.: Video flickering removal using temporal reconstruction optimization. Multimedia Tools Appl. 79, 4661–4679 (2019)
Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)
Liu, C.: Beyond pixels: exploring new representations and applications for motion analysis. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2009)
Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. 27(3), 1–10 (2008)
Meng, X., et al.: A video information driven football recommendation system. Comput. Electr. Eng. 85, 106699 (2020). https://doi.org/10.1016/j.compeleceng.2020.106699
Müller, M., Zilly, F., Riechert, C., Kauff, P.: Spatio-temporal consistent depth maps from multi-view video. In: 2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4 (2011)
Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J.: Occlusion-aware method for temporally consistent superpixels. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1441–1454 (2019)
Sheng, B., Li, P., Zhang, Y., Mao, L.: GreenSea: visual soccer analysis using broad learning system. IEEE Trans. Cybern. 1–15 (2020). https://doi.org/10.1109/TCYB.2020.2988792
Shin, D.K., Kim, Y.M., Park, K.T., Lee, D.S., Choi, W., Moon, Y.S.: Video dehazing without flicker artifacts using adaptive temporal average. In: The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014), pp. 1–2 (2014)
Tsai, D., Flagg, M., Nakazawa, A., Rehg, J.M.: Motion coherent tracking using multi-label MRF optimization. Int. J. Comput. Vision 100(2), 190–202 (2012)
Wang, C.M., Huang, Y.H., Huang, M.L.: An effective algorithm for image sequence color transfer. Math. Comput. Model. 44, 608–627 (2006)
Wang, Z., Chen, X., Zou, D.: Copy and paste: temporally consistent stereoscopic video blending. IEEE Trans. Circuits Syst. Video Technol. 28(10), 3053–3065 (2018)
Zhang, P., Zheng, L., Jiang, Y., Mao, L., Li, Z., Sheng, B.: Tracking soccer players using spatio-temporal context learning under multiple views. Multimedia Tools Appl. 77(15), 18935–18955 (2017). https://doi.org/10.1007/s11042-017-5316-3
Acknowledgement
This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFF0300903, in part by the National Natural Science Foundation of China under Grant 61872241 and Grant 61572316, and in part by the Science and Technology Commission of Shanghai Municipality under Grant 15490503200, Grant 18410750700, Grant 17411952600, and Grant 16DZ0501100.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, H., Ali, R., Sheng, B., Li, P., Kim, J., Wang, J. (2020). Preserving Temporal Consistency in Videos Through Adaptive SLIC. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-61864-3_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61863-6
Online ISBN: 978-3-030-61864-3
eBook Packages: Computer ScienceComputer Science (R0)