Abstract
We study the computational complexity of two well-known graph transversal problems, namely Subset Feedback Vertex Set and Subset Odd Cycle Transversal, by restricting the input to H-free graphs, that is, to graphs that do not contain some fixed graph H as an induced subgraph. By combining known and new results, we determine the computational complexity of both problems on H-free graphs for every graph H except when \(H=sP_1+P_4\) for some \(s\ge 1\). As part of our approach, we introduce the Subset Vertex Cover problem and prove that it is polynomial-time solvable for \((sP_1+P_4)\)-free graphs for every \(s\ge 1\).
This paper received support from the Leverhulme Trust (RPG-2016-258).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rzążewski, P., Seymour, P.: Induced subgraphs of bounded treewidth and the container method. CoRR, abs/2003.05185 (2020)
Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node multiway cut and subset feedback vertex set on graphs of bounded mim-width. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 388–400. Springer, Cham (2020)
Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex set for \(P_5\)-free graphs. Algorithmica 81, 1342–1369 (2019)
Brandstädt, A., Kratsch, D.: On the restriction of some NP-complete graph problems to permutation graphs. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 53–62. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0028791
Brettell, N., Horsfield, J., Munaro, A., Paesani, G., Paulusma, D.: Bounding the mim-width of hereditary graph classes. CoRR, abs/2004.05018 (2020)
Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum connected transversals in graphs: new hardness results and tractable cases using the price of connectivity. Theoret. Comput. Sci. 705, 75–83 (2018)
Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.: Faster exact algorithms for some terminal set problems. J. Comput. Syst. Sci. 88, 195–207 (2017)
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math. 27, 290–309 (2013)
Dabrowski, K.K., Feghali, C., Johnson, M., Paesani, G., Paulusma, D., Rzążewski, P.: On cycle transversals and their connected variants in the absence of a small linear forest. Algorithmica. To appear
Dabrowski, K.K., Johnson, M., Paesani, G., Paulusma, D., Zamaraev, V.: On the price of independence for vertex cover, feedback vertex set and odd cycle transversal. In: Proceedings of the MFCS 2018. LIPIcs, vol. 117, pp. 63:1–63:15 (2018)
Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)
Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumerating minimal subset feedback vertex sets. Algorithmica 69, 216–231 (2014)
Golovach, P.A., Heggernes, P., Kratsch, D., Saei, R.: Subset feedback vertex sets in chordal graphs. J. Discrete Algorithms 26, 7–15 (2014)
Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(P_6\)-free graphs. In: Proceedings of the SODA 2019, pp. 1257–1271 (2019)
Hols, E.C., Kratsch, S.: A randomized polynomial kernel for subset feedback vertex set. Theory Comput. Syst. 62(1), 63–92 (2018)
Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016)
Jaffke, L., Kwon, O., Telle, J.A.: Mim-width II. The feedback vertex set problem. Algorithmica 82(1), 118–145 (2020)
Johnson, M., Paesani, G., Paulusma, D.: Connected vertex cover for \((s{P}_1+{P}_5)\)-free graphs. Algorithmica 82, 20–40 (2020)
Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdős-Pósa property and its algorithmic applications: parity constraints, subset feedback set, and subset packing. In: Proceedings of the SODA 2012, pp. 1726–1736 (2012)
Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem. J. Comb. Theory Ser. B 102(4), 1020–1034 (2012)
Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. In: Proceedings of the FOCS 2012, pp. 450–459 (2012)
Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.: Hitting selected (odd) cycles. SIAM J. Discrete Math. 31(3), 1581–1615 (2017)
Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in \({P}_5\)-free graphs in polynomial time. In: Proceedings of the SODA 2014, pp. 570–581 (2014)
Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980)
Misra, P., Raman, V., Ramanujan, M.S., Saurabh, S.: Parameterized algorithms for Even Cycle Transversal. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 172–183. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8_19
Papadopoulos, C., Tzimas, S.: Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs. Discrete Appl. Math. 258, 204–221 (2019)
Papadopoulos, C., Tzimas, S.: Subset feedback vertex set on graphs of bounded independent set size. Theoret. Comput. Sci. 814, 177–188 (2020)
Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Math. Univ. Carol. 15, 307–309 (1974)
Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Math. 29(1), 53–76 (1980)
Speckenmeyer, E.: Untersuchungen zum Feedback Vertex Set Problem in ungerichteten Graphen. Ph.D. thesis, Universität Paderborn (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Brettell, N., Johnson, M., Paesani, G., Paulusma, D. (2020). Computing Subset Transversals in H-Free Graphs. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-60440-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60439-4
Online ISBN: 978-3-030-60440-0
eBook Packages: Computer ScienceComputer Science (R0)