iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-60290-1_29
Fine-Grained Urban Flow Prediction via a Spatio-Temporal Super-Resolution Scheme | SpringerLink
Skip to main content

Fine-Grained Urban Flow Prediction via a Spatio-Temporal Super-Resolution Scheme

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Abstract

Urban flow prediction plays an essential role in public safety and traffic scheduling for a city. By mining the original granularity flow data, current research methods could predict the coarse-grained region flow. However, the prediction of a more fine-grained region is more important for city management, which means cities could derive more details from the original granularity flow data. In this paper, given the future weather information, we aim to predict the fine-grained region flow. We design Weather-affected Fine-grained Region Flow Predictor (WFRFP) model based on the super-resolution scheme. Our model consists of three modules: 1) Key flow maps selection module selects key flow maps from massive historical data as the input instance according to temporal property and weather similarity; 2) Weather condition fusion module processes the original weather information and extracts weather features; 3) Fine-grained flow prediction module learns the spatial correlations by wide activation residual blocks and predicts the fine-grained region flow by the upsampling operation. Extensive experiments on a real-world dataset demonstrate the effectiveness and efficiency of our method, and show that our method outperforms the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv:1511.06432 (2015)

  2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  4. Hamilton, J.D.: Time Series Analysis. Economic Theory. II, pp. 625–630. Princeton University Press, Princeton (1995)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  6. Jin, W., Lin, Y., Wu, Z., Wan, H.: Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction. In: Proceedings of the 2nd International Conference on Compute and Data Analysis, pp. 28–35. ACM (2018)

    Google Scholar 

  7. Kamarianakis, Y., Prastacos, P.: Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transp. Res. Rec. 1857(1), 74–84 (2003)

    Article  Google Scholar 

  8. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  11. Liang, Y., et al.: UrbanFM: inferring fine-grained urban flows. arXiv preprint arXiv:1902.05377 (2019)

  12. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  13. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: DeepSTN+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1020–1027 (2019)

    Google Scholar 

  14. Liu, N., Ma, R., Wang, Y., Zhang, L.: Inferring fine-grained air pollution map via a spatiotemporal super-resolution scheme. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 498–504 (2019)

    Google Scholar 

  15. Peled, S., Yeshurun, Y.: Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 45(1), 29–35 (2001)

    Article  Google Scholar 

  16. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  17. Thornton, M.W., Atkinson, P.M., Holland, D.: Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. Int. J. Remote Sens. 27(3), 473–491 (2006)

    Article  Google Scholar 

  18. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  19. Xia, D., Wang, B., Li, H., Li, Y., Zhang, Z.: A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting. Neurocomputing 179, 246–263 (2016)

    Article  Google Scholar 

  20. Yu, J., et al.: Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv:1808.08718 (2018)

  21. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  22. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 92. ACM (2016)

    Google Scholar 

  23. Zonoozi, A., Kim, J.J., Li, X.L., Cong, G.: Periodic-CRN: a convolutional recurrent model for crowd density prediction with recurring periodic patterns. In: IJCAI, pp. 3732–3738 (2018)

    Google Scholar 

Download references

Acknowledegments

This work is supported by the National Natural Science Foundation of China (No. 61572165) and the National Natural Science Foundation of China (No. 61806061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, R., Xu, J., Bao, Q., Li, W., Yuan, H., Xu, M. (2020). Fine-Grained Urban Flow Prediction via a Spatio-Temporal Super-Resolution Scheme. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12318. Springer, Cham. https://doi.org/10.1007/978-3-030-60290-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60290-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60289-5

  • Online ISBN: 978-3-030-60290-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics