iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58814-4_36
Model of Post Fire Erosion Assessment Using RUSLE Method, GIS Tools and ESA Sentinel DATA | SpringerLink
Skip to main content

Model of Post Fire Erosion Assessment Using RUSLE Method, GIS Tools and ESA Sentinel DATA

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Soil erosion in fired areas is one of the main environmental problem involves degrading the quality of the soil and reducing the productivity of the affected lands. The aim of this work is to implement a procedure that analyzes the change detection of the potential soil eroded in a burned area, and discriminate the amount of potential soil loss. As part of the MESARIP project (in agreement with the Regional Civil Protection) in order to implement the analyses of soil erosion pre and post fire event, using Sentinel 2 data and with the RUSLE (Revised Universal Soil Loss Equation) method in a GIS open source environment, a graphical model has been developed. The application of the RUSLE requires a series of consequential spatial analysis elaborations and, according to this scheme, the model has been developed with the Graphical Modeler. QGIS contains in a single environment a multiplicity of tools and algorithms native to other open source GIS software, such as, for example, SAGA GIS and GRASS GIS. The user interface is very simple and requires basic and thematic input data such as DEM, MASK areas or vegetation indices etc. The advantages in the construction of the model can be identified in the standardization of map algebra operations and also in the speed of execution of the steps. Currently the model has been tested in some burned areas in 2019 located in the northern part of the Apulia Region and will be tested in operational mode during the 2020 summer season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chuvieco, E., Martin, M.P., Palacios, A.: Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 23(23), 5103–5110 (2002)

    Google Scholar 

  2. Fu, B.J., et al.: Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degrad. Dev. 16(1), 73–85 (2005)

    MathSciNet  Google Scholar 

  3. García-Ruiz, J.M., Nadal-Romero, E., Lana-Renault, N., Beguería, S.: Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198, 20–36 (2013)

    Google Scholar 

  4. García-Ruiz, J.M., et al.: Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 356(1–2), 245–260 (2008)

    Google Scholar 

  5. García, M.L., Caselles, V.: Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 6(1), 31–37 (1991)

    Google Scholar 

  6. Giovannini, G., Vallejo, R., Lucchesi, S., Bautista, S., Ciompi, S., Llovet, J.: Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. For. Ecol. Manage. 147(1), 15–23 (2001)

    Google Scholar 

  7. Hall, R.J., Freeburn, J.T., De Groot, W.J., Pritchard, J.M., Lynham, T.J., Landry, R.: Remote sensing of burn severity: experience from western Canada boreal fires. Int. J. Wildland Fire 17(4), 476–489 (2008)

    Google Scholar 

  8. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    Google Scholar 

  9. Heredia, Á., Martínez, S., Quintero, E., Piñeros, W., Chuvieco, E.: Comparación de distintas técnicas de análisis digital para la cartografía de áreas quemadas con imágenes LANDSAT ETM+. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica 3, 216–234 (2003)

    Google Scholar 

  10. Holden, Z.A., Evans, J.S.: Using fuzzy C-means and local autocorrelation to cluster satellite-inferred burn severity classes. Int. J. Wildland Fire 19(7), 853–860 (2010)

    Google Scholar 

  11. Kuo, K.T., Sekiyama, A., Mihara, M.: Determining C factor of universal soil loss equation (USLE) based on remote sensing. Int. J. Environ. Rural Dev. 7(2), 154–161 (2016)

    Google Scholar 

  12. Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 20, 42–51 (2013)

    Google Scholar 

  13. Larsen, I.J., MacDonald, L.H.: Predicting postfire sediment yields at the hillslope scale: testing RUSLE and Disturbed WEPP. Water Resour. Res. 43(11) (2007)

    Google Scholar 

  14. Lasaponara, R., Lanorte, A.: Multispectral fuel type characterization based on remote sensing data and Prometheus model. For. Ecol. Manage. 234, S226 (2006)

    Google Scholar 

  15. Lee, S.: Soil erosion assessment and its verification using the universal soil loss equation and geographic information system: a case study at Boun Korea. Environ. Geol. 45(4), 457–465 (2004)

    Google Scholar 

  16. Lisle, T.E., Napolitano, M.B.: Effects of recent logging on the main channel of North Fork Caspar Creek. In: Ziemer, R.R. [Tech. Coord.]. Proceedings of the conference on coastal watersheds: The Caspar Creek story. PSW-GTR-168. Pacific Southwest Research Station. USDA Forest Service, Albany, CA, pp. 81–85, May 1998

    Google Scholar 

  17. Miller, J.D., Nyhan, J.W., Yool, S.R.: Modeling potential erosion due to the Cerro Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss Equation. Int. J. Wildland Fire 12(1), 85–100 (2003)

    Google Scholar 

  18. Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R.: Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 10(5), 629–641 (1996)

    Google Scholar 

  19. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J.: Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sci. Soc. Am. J. 56(2), 505–516 (1992)

    Google Scholar 

  20. Panagos, P., et al.: Rainfall erosivity in Europe. Sci. Total Environ. 511, 801–814 (2015)

    Google Scholar 

  21. Panagos, P., Borrelli, P., Meusburger, K.: A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 5(2), 117–126 (2015)

    Google Scholar 

  22. Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell, C.: Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci. Total Environ. 479, 189–200 (2014)

    Google Scholar 

  23. Rauste, Y., Herland, E., Frelander, H., Soini, K., Kuoremaki, T., Ruokari, A.: Satellite-based forest fire detection for fire control in boreal forests. Int. J. Remote Sens. 18(12), 2641–2656 (1997)

    Google Scholar 

  24. Renard, K.G.: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Government Printing (1997)

    Google Scholar 

  25. Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P.: RUSLE: revised universal soil loss equation. J. Soil Water Conserv. 46(1), 30–33 (1991)

    Google Scholar 

  26. Richards, G.D.: A general mathematical framework for modeling two-dimensional wildland fire spread. Int. J. Wildland Fire 5(2), 63–72 (1995)

    Google Scholar 

  27. Shakesby, R.A.: Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci. Rev. 105(3–4), 71–100 (2011)

    Google Scholar 

  28. Sorriso-Valvo, M., Bryan, R.B., Yair, A., Iovino, F., Antronico, L.: Impact of afforestation on hydrological response and sediment production in a small Calabrian catchment. CATENA 25(1–4), 89–104 (1995)

    Google Scholar 

  29. Surfleet, C.G., Ziemer, R.R.: Effects of forest harvesting on large organic debris in coastal streams. In: LeBlanc, J. (ed.) Conference on Coast Redwood Forest Ecology and Management, 18–20 June 1996, Arcata, California. Humboldt State University, pp. 134–136 (1996)

    Google Scholar 

  30. Terranova, O., Antronico, L., Coscarelli, R., Iaquinta, P.: Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112(3–4), 228–245 (2009)

    Google Scholar 

  31. Wischmeier, W.H., Smith, D.D.: Predicting rainfall erosion losses - a guide for conservation planning. U.S. Department of Agriculture, Agriculture Handbook No 537, p. 58, Hyattsville (MD) (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Nolè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nolè, G. et al. (2020). Model of Post Fire Erosion Assessment Using RUSLE Method, GIS Tools and ESA Sentinel DATA. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Springer, Cham. https://doi.org/10.1007/978-3-030-58814-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58814-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58813-7

  • Online ISBN: 978-3-030-58814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics