iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58601-0_12
A Generic Graph-Based Neural Architecture Encoding Scheme for Predictor-Based NAS | SpringerLink
Skip to main content

A Generic Graph-Based Neural Architecture Encoding Scheme for Predictor-Based NAS

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

This work proposes a novel Graph-based neural ArchiTecture Encoding Scheme, a.k.a. GATES, to improve the predictor-based neural architecture search. Specifically, different from existing graph-based schemes, GATES models the operations as the transformation of the propagating information, which mimics the actual data processing of neural architecture. GATES is a more reasonable modeling of the neural architectures, and can encode architectures from both the “operation on node” and “operation on edge” cell search spaces consistently. Experimental results on various search spaces confirm GATES’s effectiveness in improving the performance predictor. Furthermore, equipped with the improved performance predictor, the sample efficiency of the predictor-based neural architecture search (NAS) flow is boosted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Figure 2 illustrates the OON and OOE search spaces.

  2. 2.

    A more comprehensive comparison of the MSE regression loss and multiple ranking losses is shown in the appendix.

  3. 3.

    Note that this inner search component could be easily substituted with other search strategies.

  4. 4.

    See “Setup and Additional Results” section in the appendix for more details.

  5. 5.

    We also implement an ad-hoc solution of applying GCN on OOE architectures referred to as the Line Graph GCN solution, in which the graph is first converted to a line graph. See “Setup and Additional Results” section in the appendix for more details.

References

  1. Chen, W., Liu, T.-Y., Lan, Y., Ma, Z., Li, H.: Ranking measures and loss functions in learning to rank. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 315–323. Curran Associates, Inc., New York (2009)

    Google Scholar 

  2. Dong, X., Yang, Y.: Nas-bench-201: extending the scope of reproducible neural architecture search. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=HJxyZkBKDr

  3. Guo, Y., et al.: Breaking the curse of space explosion: towards effcient nas with curriculum search. In: International Conference on Machine Learning (2010)

    Google Scholar 

  4. Guo, Y., et al.: Nat: neural architecture transformer for accurate and compact architectures. In: Advances in Neural Information Processing Systems, pp. 735–747 (2019)

    Google Scholar 

  5. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.P.: Neural architecture search with Bayesian optimisation and optimal transport. In: Advances in Neural Information Processing Systems, pp. 2016–2025 (2018)

    Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  7. Lian, D., et al.: Towards fast adaptation of neural architectures with meta learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  9. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)

  10. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  11. Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009)

    Google Scholar 

  12. Luo, R., Qin, T., Chen, E.: Understanding and improving one-shot neural architecture optimization. arXiv preprint arXiv:1909.10815 (2019)

  13. Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.Y.: Neural architecture optimization. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 7816–7827. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/8007-neural-architecture-optimization.pdf

  14. Negrinho, R., Gordon, G.: Deeparchitect: automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017)

  15. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

  16. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. Proc. AAAI Conf. Artificial Intell. 33, 4780–4789 (2019)

    Google Scholar 

  17. Sciuto, C., Yu, K., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search phase of neural architecture search. arXiv preprint arXiv:1902.08142 (2019)

  18. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63(324), 1379–1389 (1968)

    Article  MathSciNet  Google Scholar 

  19. Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural architecture search via predictive network performance optimization. arXiv preprint arXiv:1911.09336 (2019)

  20. Stagge, P., Igel, C.: Neural network structures and isomorphisms: random walk characteristics of the search space. In: 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No. 00), pp. 82–90. IEEE (2000)

    Google Scholar 

  21. Wang, L., Zhao, Y., Jinnai, Y., Fonseca, R.: Alphax: exploring neural architectures with deep neural networks and monte carlo tree search. arXiv preprint arXiv:1805.07440 (2018)

  22. Xie, S., Kirillov, A., Girshick, R., He, K.: Exploring randomly wired neural networks for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1284–1293 (2019)

    Google Scholar 

  23. Xu, Y., et al.: Renas:relativistic evaluation of neural architecture search (2019)

    Google Scholar 

  24. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: Nas-bench-101: towards reproducible neural architecture search. arXiv preprint arXiv:1902.09635 (2019)

  25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017). https://arxiv.org/abs/1611.01578

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61832007, 61622403, 61621091, U19B2019), Beijing National Research Center for Information Science and Technology (BNRist). The authors thank Novauto for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 587 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ning, X., Zheng, Y., Zhao, T., Wang, Y., Yang, H. (2020). A Generic Graph-Based Neural Architecture Encoding Scheme for Predictor-Based NAS. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics