iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58571-6_13
Texture Hallucination for Large-Factor Painting Super-Resolution | SpringerLink
Skip to main content

Texture Hallucination for Large-Factor Painting Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

We aim to super-resolve digital paintings, synthesizing realistic details from high-resolution reference painting materials for very large scaling factors (e.g., 8\(\times \), 16\(\times \)). However, previous single image super-resolution (SISR) methods would either lose textural details or introduce unpleasing artifacts. On the other hand, reference-based SR (Ref-SR) methods can transfer textures to some extent, but is still impractical to handle very large factors and keep fidelity with original input. To solve these problems, we propose an efficient high-resolution hallucination network for very large scaling factors with efficient network structure and feature transferring. To transfer more detailed textures, we design a wavelet texture loss, which helps to enhance more high-frequency components. At the same time, to reduce the smoothing effect brought by the image reconstruction loss, we further relax the reconstruction constraint with a degradation loss which ensures the consistency between downscaled super-resolution results and low-resolution inputs. We also collected a high-resolution (e.g., 4K resolution) painting dataset PaintHD by considering both physical size and image resolution. We demonstrate the effectiveness of our method with extensive experiments on PaintHD by comparing with SISR and Ref-SR state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The 2018 pirm challenge on perceptual image super-resolution. In: ECCV (2018)

    Google Scholar 

  2. Boominathan, V., Mitra, K., Veeraraghavan, A.: Improving resolution and depth-of-field of light field cameras using a hybrid imaging system. In: ICCP (2014)

    Google Scholar 

  3. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)

    Google Scholar 

  4. Commons, W.: Google art project (2018). https://commons.wikimedia.org/wiki/Category:Google_Art_Project

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  7. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. TOG 30, 1–11 (2011)

    Article  Google Scholar 

  8. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 2, 56–65 (2002)

    Article  Google Scholar 

  9. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. IJCV 40, 25–47 (2000)

    Article  Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NeurIPS (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  17. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)

    Google Scholar 

  18. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  19. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  20. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  21. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015)

    Google Scholar 

  22. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  23. Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. CVIU 158, 1–16 (2017)

    Google Scholar 

  24. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. SPL 20, 209–212 (2012)

    Google Scholar 

  25. Sajjadi, M.S., Schölkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV (2017)

    Google Scholar 

  26. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: ICCP (2012)

    Google Scholar 

  29. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: ICCV (2015)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  31. Yang, W., Xia, S., Liu, J., Guo, Z.: Reference-guided deep super-resolution via manifold localized external compensation. TCSVT 29, 1270–1283 (2018)

    Google Scholar 

  32. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: ICCV (2019)

    Google Scholar 

  33. Yue, H., Sun, X., Yang, J., Wu, F.: Landmark image super-resolution by retrieving web images. TIP 22, 4865–4878 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR (2018)

    Google Scholar 

  35. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  36. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  37. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR (2019)

    Google Scholar 

  38. Zheng, H., Guo, M., Wang, H., Liu, Y., Fang, L.: Combining exemplar-based approach and learning-based approach for light field super-resolution using a hybrid imaging system. In: ICCV (2017)

    Google Scholar 

  39. Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: CrossNet: an end-to-end reference-based super resolution network using cross-scale warping. In: ECCV (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Adobe gift fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulun Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11004 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhang, Z., DiVerdi, S., Wang, Z., Echevarria, J., Fu, Y. (2020). Texture Hallucination for Large-Factor Painting Super-Resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics