iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58555-6_16
Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training | SpringerLink
Skip to main content

Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

  • 4909 Accesses

Abstract

Although two-stage object detectors have continuously advanced the state-of-the-art performance in recent years, the training process itself is far from crystal. In this work, we first point out the inconsistency problem between the fixed network settings and the dynamic training procedure, which greatly affects the performance. For example, the fixed label assignment strategy and regression loss function cannot fit the distribution change of proposals and thus are harmful to training high quality detectors. Consequently, we propose Dynamic R-CNN to adjust the label assignment criteria (IoU threshold) and the shape of regression loss function (parameters of SmoothL1 Loss) automatically based on the statistics of proposals during training. This dynamic design makes better use of the training samples and pushes the detector to fit more high quality samples. Specifically, our method improves upon ResNet-50-FPN baseline with 1.9% AP and 5.5% AP\(_{90}\) on the MS COCO dataset with no extra overhead. Codes and models are available at https://github.com/hkzhang95/DynamicRCNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specifically, high quality represents the results under high IoU.

  2. 2.

    https://github.com/facebookresearch/maskrcnn-benchmark.

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML (2009)

    Google Scholar 

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR (2018)

    Google Scholar 

  4. Chen, Y., et al.: SimpleDet: a simple and versatile distributed framework for object detection and instance recognition. JMLR 20(156), 1–8 (2019)

    Google Scholar 

  5. Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage object detection. arXiv:1908.01570 (2019)

  6. Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Revisiting RCNN: on awakening the classification power of faster RCNN. In: ECCV (2018)

    Google Scholar 

  7. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  8. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  12. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron

  13. Gu, X., Chang, H., Ma, B., Zhang, H., Chen, X.: Appearance-preserving 3D convolution for video-based person re-identification. In: ECCV (2020)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with uncertainty for accurate object detection. In: CVPR (2019)

    Google Scholar 

  17. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017)

    Google Scholar 

  18. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence for accurate object detection. In: ECCV (2018)

    Google Scholar 

  19. Jiang, Z., Liu, Y., Yang, C., Liu, J., Gao, P., Zhang, Q., Xiang, S., Pan, C.: Learning where to focus for efficient video object detection. In: ECCV (2020). https://doi.org/10.1007/978-3-030-58517-4_2

  20. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  22. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS (2010)

    Google Scholar 

  23. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: ECCV (2018)

    Google Scholar 

  24. Li, H., Wu, Z., Zhu, C., Xiong, C., Socher, R., Davis, L.S.: Learning from noisy anchors for one-stage object detection. In: CVPR (2020)

    Google Scholar 

  25. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: ICCV (2019)

    Google Scholar 

  26. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: design backbone for object detection. In: ECCV (2018)

    Google Scholar 

  27. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  29. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  30. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: ECCV (2018)

    Google Scholar 

  31. Liu, W., et al.: SSD: Single shot multibox detector. In: ECCV (2016)

    Google Scholar 

  32. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  33. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: CVPR (2019)

    Google Scholar 

  34. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop (2017)

    Google Scholar 

  35. Peng, C., et al.: MegDet: a large mini-batch object detector. In: CVPR (2018)

    Google Scholar 

  36. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  38. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2016)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  40. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - SNIP. In: CVPR (2018)

    Google Scholar 

  41. Tan, Z., Nie, X., Qian, Q., Li, N., Li, H.: Learning to rank proposals for object detection. In: ICCV (2019)

    Google Scholar 

  42. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  43. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: CVPR (2019)

    Google Scholar 

  44. Wang, J., et al.: Side-aware boundary localization for more precise object detection. In: ECCV (2020)

    Google Scholar 

  45. Xu, H., Lv, X., Wang, X., Ren, Z., Bodla, N., Chellappa, R.: Deep regionlets for object detection. In: ECCV (2018)

    Google Scholar 

  46. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: ICCV (2019)

    Google Scholar 

  47. Zhang, H., Chang, H., Ma, B., Shan, S., Chen, X.: Cascade RetinaNet: maintaining consistency for single-stage object detection. In: BMVC (2019)

    Google Scholar 

  48. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR (2020)

    Google Scholar 

  49. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors for visual object detection. In: NeurIPS (2019)

    Google Scholar 

  50. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv:1904.07850 (2019)

  51. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by Natural Science Foundation of China (NSFC): 61876171 and 61976203, and Beijing Natural Science Foundation under Grant L182054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 120 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Chang, H., Ma, B., Wang, N., Chen, X. (2020). Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics