Abstract
Dense object detectors rely on the sliding-window paradigm that predicts the object over a regular grid of image. Meanwhile, the feature maps on the point of the grid are adopted to generate the bounding box predictions. The point feature is convenient to use but may lack the explicit border information for accurate localization. In this paper, We propose a simple and efficient operator called Border-Align to extract “border features” from the extreme point of the border to enhance the point feature. Based on the BorderAlign, we design a novel detection architecture called BorderDet, which explicitly exploits the border information for stronger classification and more accurate localization. With ResNet-50 backbone, our method improves single-stage detector FCOS by 2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches.
The first two authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: The IEEE International Conference on Computer Vision (ICCV), October 2017
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6569–6578 (2019)
Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)
Gidaris, S., Komodakis, N.: Attend refine repeat: active box proposal generation via in-out localization. In: Richard C.,W.E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 90.1–90.13. BMVA Press, September 2016. https://doi.org/10.5244/C.30.90
Gidaris, S., Komodakis, N.: LocNet: improving localization accuracy for object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE International Conference on Computer Vision (ICCV), October 2017
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23
Huang, L., Yang, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)
Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2017–2025. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: The European Conference on Computer Vision (ECCV), September 2018
Li, Y., He, K., Sun, J., et al.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, vol. 1, p. 4 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007. IEEE (2017)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European Conference on Computer Vision, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv e-prints arXiv:1607.08022 (Jul 2016)
Vu, T., Jang, H., Pham, T.X., Yoo, C.D.: Cascade RPN: delving into high-quality region proposal network with adaptive convolution. arXiv e-prints arXiv:1909.06720 (Sep 2019)
Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Wang, J., et al.: Side-aware boundary localization for more precise object detection. arXiv e-prints arXiv:1912.04260, December 2019
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. CoRR abs/1711.06897 (2017), http://arxiv.org/abs/1711.06897
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by grouping extreme and center points. CoRR abs/1901.08043 (2019). http://arxiv.org/abs/1901.08043
Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019)
Acknowledgement
This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFA0700800.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J. (2020). BorderDet: Border Feature for Dense Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-58452-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58451-1
Online ISBN: 978-3-030-58452-8
eBook Packages: Computer ScienceComputer Science (R0)