iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58452-8_32
BorderDet: Border Feature for Dense Object Detection | SpringerLink
Skip to main content

BorderDet: Border Feature for Dense Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

Dense object detectors rely on the sliding-window paradigm that predicts the object over a regular grid of image. Meanwhile, the feature maps on the point of the grid are adopted to generate the bounding box predictions. The point feature is convenient to use but may lack the explicit border information for accurate localization. In this paper, We propose a simple and efficient operator called Border-Align to extract “border features” from the extreme point of the border to enhance the point feature. Based on the BorderAlign, we design a novel detection architecture called BorderDet, which explicitly exploits the border information for stronger classification and more accurate localization. With ResNet-50 backbone, our method improves single-stage detector FCOS by 2.8 AP gains (38.6 v.s. 41.4). With the ResNeXt-101-DCN backbone, our BorderDet obtains 50.3 AP, outperforming the existing state-of-the-art approaches.

The first two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  2. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  3. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  4. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  5. Gidaris, S., Komodakis, N.: Attend refine repeat: active box proposal generation via in-out localization. In: Richard C.,W.E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 90.1–90.13. BMVA Press, September 2016. https://doi.org/10.5244/C.30.90

  6. Gidaris, S., Komodakis, N.: LocNet: improving localization accuracy for object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  11. Huang, L., Yang, Y., Deng, Y., Yu, Y.: DenseBox: unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)

  12. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2017–2025. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf

  13. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  14. Li, Y., He, K., Sun, J., et al.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, vol. 1, p. 4 (2017)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007. IEEE (2017)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European Conference on Computer Vision, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE (2017)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  21. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)

  22. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv e-prints arXiv:1607.08022 (Jul 2016)

  23. Vu, T., Jang, H., Pham, T.X., Yoo, C.D.: Cascade RPN: delving into high-quality region proposal network with adaptive convolution. arXiv e-prints arXiv:1909.06720 (Sep 2019)

  24. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  25. Wang, J., et al.: Side-aware boundary localization for more precise object detection. arXiv e-prints arXiv:1912.04260, December 2019

  26. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  27. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. CoRR abs/1711.06897 (2017), http://arxiv.org/abs/1711.06897

  28. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  29. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by grouping extreme and center points. CoRR abs/1901.08043 (2019). http://arxiv.org/abs/1901.08043

  30. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 840–849 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFA0700800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 535 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J. (2020). BorderDet: Border Feature for Dense Object Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics