iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-58150-3_34
New Symmetry-less ILP Formulation for the Classical One Dimensional Bin-Packing Problem | SpringerLink
Skip to main content

New Symmetry-less ILP Formulation for the Classical One Dimensional Bin-Packing Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12273))

Included in the following conference series:

  • 933 Accesses

Abstract

In this article, we address the classical One-Dimensional Bin Packing Problem (1D-BPP), an \(\mathcal {NP}\)-hard combinatorial optimization problem. We propose a new formulation of integer linear programming for the problem, which reduces the search space compared to those described in the literature, as well as two families of cutting planes. Computational experiments are conducted on the data-set found in BPPLib and the results show that it is possible to solve more instances and to decrease the computation time by using our new formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbib, C., Marinelli, F.: Maximum lateness minimization in one-dimensional bin packing. Omega 68, 76–84 (2017)

    Article  Google Scholar 

  2. Cambazard, H., O’Sullivan, B.: Propagating the bin packing constraint using linear programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 129–136. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_13

    Chapter  Google Scholar 

  3. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: Mathematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  4. Delorme, M., Iori, M., Martello, S.: BPPLIB: a library for bin packing and cutting stock problems. Optim. Lett. 12(2), 235–250 (2018)

    Article  MathSciNet  Google Scholar 

  5. Dyckhoff, H.: A new linear programming approach to the cutting stock problem. Oper. Res. 29(6), 1092–1104 (1981)

    Article  MathSciNet  Google Scholar 

  6. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2(1), 5–30 (1996)

    Article  Google Scholar 

  7. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. 100(2), 423–445 (2004)

    Article  MathSciNet  Google Scholar 

  8. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations (1990)

    Google Scholar 

  9. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28(1), 59–70 (1990)

    Article  MathSciNet  Google Scholar 

  10. Ryan, D., Foster, E.: An integer programming approach to scheduling. Computer scheduling of public transport urban passenger vehicle and crew scheduling, pp. 269–280 (1981)

    Google Scholar 

  11. Scholl, A., Klein, R., Jürgens, C.: Bison: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comput. Oper. Res. 24(7), 627–645 (1997)

    Article  Google Scholar 

  12. Schwerin, P., Wäscher, G.: The bin-packing problem: A problem generator and some numerical experiments with FFD packing and MTP. Int. Trans. Oper. Res. 4(5–6), 377–389 (1997)

    Article  Google Scholar 

  13. Wäscher, G., Gau, T.: Heuristics for the integer one-dimensional cutting stock problem: a computational study. Oper.-Res.-Spectr. 18(3), 131–144 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Hadj Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadj Salem, K., Kieffer, Y. (2020). New Symmetry-less ILP Formulation for the Classical One Dimensional Bin-Packing Problem. In: Kim, D., Uma, R., Cai, Z., Lee, D. (eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science(), vol 12273. Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58150-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58149-7

  • Online ISBN: 978-3-030-58150-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics