iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-51041-1_50
Mathematical Modeling and Optimization of Downdraft Gasifiers Using Artificial Neural Networks (ANN) and Stochastic Programming Techniques | SpringerLink
Skip to main content

Mathematical Modeling and Optimization of Downdraft Gasifiers Using Artificial Neural Networks (ANN) and Stochastic Programming Techniques

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2020)

Abstract

The research study explores the modeling and optimization of multi-objective operation of biomass gasification facilities using of Artificial Neural Networks (ANN) and Stochastic non-linear Programming methods. This study underpins the modelling by starting from the classification of the information derived from the systemic analysis of the gasification facilities. The study is based on the multi-objective mathematical modeling of these facilities through the different optimization and Neural Networks techniques specified in the literature. A 3N experimental plan with 3 replicas is made to generate four models according to their performance indicators using Neural Networks, with satisfactory results and their evaluation based on regression of coefficients. The standard errors are calculated using biomasses with low, medium and high caloric power biomass. The experimental installation and the developed data acquisition systems are presented to validate the results. Numerical experimentation and the analysis show that such models could be used for developing operational system for existing design of downdraft installations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, T.Y., et al.: Renew. Sustain. Energy Rev. 16, 304–315 (2013)

    Google Scholar 

  2. Ahmed, T.Y., Ahmad, M.M., Yusup, S., Inayat, A., Khan, Z.: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew. Sustain. Energy Rev. 16, 2304–2315 (2017)

    Article  Google Scholar 

  3. Arzola, J.: Sistemas de Ingeniería. Editorial Félix Varela, La Habana (2012)

    Google Scholar 

  4. Azzone, E., Morini, M., Pinelli, M.: Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues. Renewable Energy 46, 248–254 (2013)

    Article  Google Scholar 

  5. Han, J., Liang, Y., Hu, J., Qin, L., Street, J., Lu, Y., Yu, F.: Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus. Energy Convers. Manage. 153, 641–648 (2017)

    Article  Google Scholar 

  6. Mikulandrić, R., et al.: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manage. 73, 322–332 (2014)

    Google Scholar 

  7. Gutiérrez-Gualotuña, E.R., Arzola-Ruiz, J., Almeida-Mera, J.C.: Modelos para la operación de gasificación de la leña en instalaciones downdraft. Ingeniería Mecánica 21, 117–123 (2018)

    Google Scholar 

  8. Gutiérrez-Gualotuña, E.R., Almeida-Mera, J.C., Arzola-Ruiz, J.: Modelado por redes neuronales artificiales de los indicadores de desempeño de operación en instalaciones de gasificación termoquímica downdraft. Aporte Santiaguino 10, 140–152 (2018)

    Google Scholar 

  9. Pico-Gordón, J.A., Soria-Amancha, J.A., Gutierrez-Gualotuña, E.R., Arzola-Ruiz, J.: Modelado por técnicas de regresión de los parámetros energéticos de desempeño para gasificadores tipo downdraft. Revista de Ingeniería Energética 40, 138–147 (2019)

    Google Scholar 

  10. Walpole, R.E., et al.: Probabilidad y estadística para ingeniería y ciencias, 9th edn. Pearson Educación, México (2012)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge SMME-National University of Sciences and Technology (NUST), Islamabad, Pakistan, Studies Center of Mathematics for Technical Sciences - (CEMAT), Universidad Tecnológica de La Habana, “Jose Antonio Echevarria” (CUJAE), Habana, Cuba and Laboratorio de Energía Renovable, Universidad de las Fuerzas Armadas del Ecuador (ESPE), Quito, Ecuador for providing necessary support and facilities to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umer Asgher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asgher, U. et al. (2021). Mathematical Modeling and Optimization of Downdraft Gasifiers Using Artificial Neural Networks (ANN) and Stochastic Programming Techniques. In: Ayaz, H., Asgher, U. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-51041-1_50

Download citation

Publish with us

Policies and ethics