Abstract
The research study explores the modeling and optimization of multi-objective operation of biomass gasification facilities using of Artificial Neural Networks (ANN) and Stochastic non-linear Programming methods. This study underpins the modelling by starting from the classification of the information derived from the systemic analysis of the gasification facilities. The study is based on the multi-objective mathematical modeling of these facilities through the different optimization and Neural Networks techniques specified in the literature. A 3N experimental plan with 3 replicas is made to generate four models according to their performance indicators using Neural Networks, with satisfactory results and their evaluation based on regression of coefficients. The standard errors are calculated using biomasses with low, medium and high caloric power biomass. The experimental installation and the developed data acquisition systems are presented to validate the results. Numerical experimentation and the analysis show that such models could be used for developing operational system for existing design of downdraft installations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, T.Y., et al.: Renew. Sustain. Energy Rev. 16, 304–315 (2013)
Ahmed, T.Y., Ahmad, M.M., Yusup, S., Inayat, A., Khan, Z.: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew. Sustain. Energy Rev. 16, 2304–2315 (2017)
Arzola, J.: Sistemas de Ingeniería. Editorial Félix Varela, La Habana (2012)
Azzone, E., Morini, M., Pinelli, M.: Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues. Renewable Energy 46, 248–254 (2013)
Han, J., Liang, Y., Hu, J., Qin, L., Street, J., Lu, Y., Yu, F.: Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus. Energy Convers. Manage. 153, 641–648 (2017)
Mikulandrić, R., et al.: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manage. 73, 322–332 (2014)
Gutiérrez-Gualotuña, E.R., Arzola-Ruiz, J., Almeida-Mera, J.C.: Modelos para la operación de gasificación de la leña en instalaciones downdraft. Ingeniería Mecánica 21, 117–123 (2018)
Gutiérrez-Gualotuña, E.R., Almeida-Mera, J.C., Arzola-Ruiz, J.: Modelado por redes neuronales artificiales de los indicadores de desempeño de operación en instalaciones de gasificación termoquímica downdraft. Aporte Santiaguino 10, 140–152 (2018)
Pico-Gordón, J.A., Soria-Amancha, J.A., Gutierrez-Gualotuña, E.R., Arzola-Ruiz, J.: Modelado por técnicas de regresión de los parámetros energéticos de desempeño para gasificadores tipo downdraft. Revista de Ingeniería Energética 40, 138–147 (2019)
Walpole, R.E., et al.: Probabilidad y estadística para ingeniería y ciencias, 9th edn. Pearson Educación, México (2012)
Acknowledgements
We would like to acknowledge SMME-National University of Sciences and Technology (NUST), Islamabad, Pakistan, Studies Center of Mathematics for Technical Sciences - (CEMAT), Universidad Tecnológica de La Habana, “Jose Antonio Echevarria” (CUJAE), Habana, Cuba and Laboratorio de Energía Renovable, Universidad de las Fuerzas Armadas del Ecuador (ESPE), Quito, Ecuador for providing necessary support and facilities to conduct this study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Asgher, U. et al. (2021). Mathematical Modeling and Optimization of Downdraft Gasifiers Using Artificial Neural Networks (ANN) and Stochastic Programming Techniques. In: Ayaz, H., Asgher, U. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-51041-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-51041-1_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51040-4
Online ISBN: 978-3-030-51041-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)