iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-44685-7_9
Secure and Resilient Communications in the Industrial Internet | SpringerLink
Skip to main content

Secure and Resilient Communications in the Industrial Internet

  • Chapter
  • First Online:
Guide to Disaster-Resilient Communication Networks

Abstract

The Industrial Internet brings the promise of increased efficiency through on-demand manufacturing and maintenance, combining sensors data from engines and industrial devices with big data analysis in the cloud. In this chapter, we survey the main challenges that the Industrial Internet faces from a networking viewpoint. We especially focus on security, as critical industrial components could be exposed over the Internet, affecting resilience. We describe two approaches, Identity-Defined Networking and Software-Defined Virtual Private LAN Services as potential network architectures for the Industrial Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad I, Kumar T, Liyanage M, Okwuibe J, Ylianttila M, Gurtov A (2017) 5G security: analysis of threats and solutions. In: 2017 IEEE Conference on Standards for Communications and Networking (CSCN), pp 193–199. IEEE, New York

    Google Scholar 

  2. Awadalla H (2005) Wide area ethernet, VPNs, VPLS—current trends and future developments. In: The IEE Annual Course on Telecoms Networks—the Next Generation, 2005 (Ref. No. 2005/11047), pp 0_21–5/16. IET

    Google Scholar 

  3. Boye CA, Kearney P, Josephs M (2018) Cyber-risks in the industrial Internet of Things (IIoT): towards a method for continuous assessment. In: International Conference on Information Security, pp 502–519. Springer, Berlin

    Google Scholar 

  4. Breivold HP, Sandström K (2015) Internet of things for industrial automation–challenges and technical solutions. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems, pp 532–539. IEEE, New York

    Google Scholar 

  5. Cai D, Wielosz A, Wei S (2014) Evolve carrier Ethernet architecture with SDN and segment routing. In: 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp 1–6. IEEE, New York

    Google Scholar 

  6. Casado M, Koponen T, Shenker S, Tootoonchian A (2012) Fabric: a retrospective on evolving SDN. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp 85–90. ACM

    Google Scholar 

  7. Chen N, Fan Y, He X, Liu Y, Li Q (2015) Research on cloud datacenter interconnect technology. In: Web technologies and applications, pp 79–86. Springer, Berlin

    Google Scholar 

  8. Cisco (2011) H-VPLS N-PE redundancy for QinQ and MPLS access. Tech. rep

    Google Scholar 

  9. Dong X, Yu S (2005) VPLS: an effective technology for building scalable transparent LAN services. In: Asia-Pacific optical communications, pp 137–147. International Society for Optics and Photonics

    Google Scholar 

  10. Ferrari P, Sisinni E, Brandão D, Rocha M (2017) Evaluation of communication latency in industrial IoT applications. In: 2017 IEEE International Workshop on Measurement and Networking (M&N), pp 1–6. IEEE, New York

    Google Scholar 

  11. Gurtov A (2008) Host identity protocol (HIP): towards the secure mobile Internet. Wiley

    Google Scholar 

  12. Gurtov A, Liyanage M, Korzun D (2016) Secure communication and data processing challenges in the industrial internet. Baltic J Modern Comput 4(4):1058–1073

    Article  Google Scholar 

  13. Gurtov A, Polishchuk T, Wernberg M (2018) Controller-pilot data link communication security. Sensors 18(5):1636

    Article  Google Scholar 

  14. Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, Fu K, Kohno T, Maisel WH (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp 129–142. IEEE, New York

    Google Scholar 

  15. Henderson T, Venema S, Mattes D (2013) HIP-based virtual private LAN service (HIPLS). Internet Draft

    Google Scholar 

  16. Hu JW, Yang CS, Liu TL (2016) L2OVX: an on-demand VPLS service with software-defined networks. In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp 861–866. IEEE, New York

    Google Scholar 

  17. Joseph V, Mulugu S (2011) Deploying next generation multicast-enabled applications: label switched multicast for MPLS VPNs, VPLS, and wholesale ethernet. Elsevier, Amsterdam

    Google Scholar 

  18. Khan R, Kumar P, Jayakody DNK, Liyanage M (2019) A survey on security and privacy of 5G technologies: potential solutions, recent advancements and future directions. IEEE Commun Surv Tutor. https://doi.org/10.1109/COMST.2019.2933899

  19. Kompella K, Rekhter Y (2007) Virtual private LAN service (VPLS) using BGP for auto-discovery and signaling. RFC 4761

    Google Scholar 

  20. Konstantaras S, Thessalonikefs G (2014) Software defined VPNs. Master’s thesis, University of Amsterdam

    Google Scholar 

  21. Kumar P, Gurtov A, Iinatti J, Ylianttila M, Sain M (2016) Lightweight and secure session-key establishment scheme in smart home environments. IEEE Sens J 16(1):254–264

    Article  Google Scholar 

  22. Lasserre M, Kompella V (2007) Virtual private LAN service (VPLS) using label distribution protocol (LDP) signaling. RFC 4762

    Google Scholar 

  23. Li JQ, Yu FR, Deng G, Luo C, Ming Z, Yan Q (2017) Industrial internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun Surv Tutor 19(3):1504–1526

    Google Scholar 

  24. Liu Z (2011) Analysis of virtual private LAN service (VPLS) deployment

    Google Scholar 

  25. Liyanage M (2016) Enhancing security and scalability of virtual private LAN services. Ph.D. dissertation, University of Oulu

    Google Scholar 

  26. Liyanage M, Abro A, Ylianttila M, Gurtov A (2016) Opportunities and challenges of software-defined mobile networks in network security perspective. IEEE Secur Priv Mag

    Google Scholar 

  27. Liyanage M, Ahmad I, Okwuibe J et al (2018) Software defined security monitoring in 5G networks. In: A comprehensive guide to 5G security, p 231

    Google Scholar 

  28. Liyanage M, Ahmed I, Abro AB, Gurtov A, Ylianttila M (2018) A comprehensive guide to 5G security. Wiley, New York

    Google Scholar 

  29. Liyanage M, Gurtov A (2013) A scalable and secure VPLS architecture for provider provisioned networks. In: IEEE Wireless Communication and Networking Conference: WCNC 2013. IEEE, New York

    Google Scholar 

  30. Liyanage M, Gurtov A (2014) Securing virtual private LAN service by efficient key management. Secur Commun Netw 7(1):1–13

    Article  Google Scholar 

  31. Liyanage M, Gurtov A, Ylianttila M (2015) Secure hierarchical VPLS architecture for provider provisioned networks. Access IEEE 3:967–984

    Article  Google Scholar 

  32. Liyanage M, Gurtov A, Ylianttila M (2015) Software defined mobile networks. SDMN), beyond LTE network architecture. Wiley, New York

    Google Scholar 

  33. Liyanage M, Gurtov A, Ylianttila M (2016) Improving the tunnel management performance of secure VPLS architectures with SDN. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, USA. IEEE, New York

    Google Scholar 

  34. Liyanage M, Okwuibe J, Ahmed I, Ylianttila M, Pérez OL, Itzazelaia MU, de Oca EM (2017) Software defined monitoring (SDM) for 5G mobile backhaul networks. In: 2017 IEEE International Symposium on Local and Metropolitan area Networks (LANMAN), pp 1–6. IEEE, New York

    Google Scholar 

  35. Liyanage M, Ylianttila M, Gurtov A (2013) Secure hierarchical virtual private LAN services for provider provisioned networks. In: 2013 IEEE Conference on Communications and Network Security (CNS), pp 233–241. IEEE, New York

    Google Scholar 

  36. Liyanage M, Ylianttila M, Gurtov A (2014) A case study on security issues in LTE backhaul and core networks. Case Stud Secure Comput Achiev Trends 1:167

    Article  Google Scholar 

  37. Liyanage M, Ylianttila M, Gurtov A (2014) IP-based virtual private network implementations in future cellular networks. In: Handbook of research on progressive trends in wireless communications and networking, pp 44–66. IGI Global

    Google Scholar 

  38. Liyanage M, Ylianttila M, Gurtov A (2017) Software defined VPLS architectures: opportunities and challenges. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp 1–7. IEEE, New York

    Google Scholar 

  39. Maggi F, Quarta D, Pogliani M, Polino M, Zanchettin AM, Zanero S (2017) Rogue robots: testing the limits of an industrial robot’s security. Technical report, Trend Micro, Politecnico di Milano

    Google Scholar 

  40. Meany T (2017) Functional safety and industrie 4.0. In: 2017 28th Irish Signals and Systems Conference (ISSC), pp 1–7. IEEE, New York

    Google Scholar 

  41. Nguyen KT, Laurent M, Oualha N (2015) Survey on secure communication protocols for the internet of things. Ad Hoc Netw 32:17–31

    Article  Google Scholar 

  42. Nikander P, Gurtov A, Henderson TR (2010) Host identity protocol (HIP): connectivity, mobility, multi-homing, security, and privacy over IPv4 and IPv6 networks. IEEE Commun Surv Tutor 12(2):186–204

    Article  Google Scholar 

  43. Nunes BA, Mendonca M, Nguyen XN, Obraczka K, Turletti T (2014) A survey of software-defined networking: Past, present, and future of programmable networks. Commun Surv Tutor IEEE 16(3):1617–1634

    Article  Google Scholar 

  44. O’Flynn CP (2011) Message denial and alteration on IEEE 802.15. 4 low-power radio networks. In: 2011 4th IFIP International Conference on New Technologies, Mobility and Security, pp 1–5. IEEE, New York

    Google Scholar 

  45. Okwuibe J, Liyanage M, Ylianttila M (2015) Performance analysis of open-source linux-based hip implementations. In: 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), pp 60–65. IEEE, New York

    Google Scholar 

  46. Peterson D (2011) PLCs: Insecure by design v. vulnerabilities. Digital Bond

    Google Scholar 

  47. Peterson D (2013) Why crain/sistrunk vulns are a big deal. Digital Bond

    Google Scholar 

  48. Porambage P, Okwuibe J, Liyanage M, Ylianttila M, Taleb T (2018) Survey on multi-access edge computing for internet of things realization. IEEE Commun Surv Tutor 20(4):2961–2991

    Article  Google Scholar 

  49. Sadeghi AR, Wachsmann C, Waidner M (2015) Security and privacy challenges in industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp 1–6. IEEE, New York

    Google Scholar 

  50. Sezer S, Scott-Hayward S, Chouhan PK, Fraser B, Lake D, Finnegan J, Viljoen N, Miller M, Rao N (2013) Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun Mag 51(7):36–43

    Article  Google Scholar 

  51. Shah H, Rosen E, Le Faucheur F, Heron G (2015) IP-only LAN service (IPLS). Tech. rep

    Google Scholar 

  52. Sharma V, Choudhary G, Ko Y, You I (2018) Behavior and vulnerability assessment of drones-enabled industrial internet of things (IIoT). IEEE Access 6:43368–43383

    Article  Google Scholar 

  53. Siriwardhana Y, Porambage P, Liyanage M, Walia JS, Matinmikko-Blue M, Ylianttila M (2019) Micro-operator driven local 5G network architecture for industrial internet. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–8

    Google Scholar 

  54. Stellios I, Kotzanikolaou P, Psarakis M, Alcaraz C, Lopez J (2018) A survey of IoT-enabled cyberattacks: assessing attack paths to critical infrastructures and services. IEEE Commun Surv Tutor 20(4):3453–3495

    Google Scholar 

  55. Tellbach D, Li YF (2018) Cyber-attacks on smart meters in household nanogrid: modeling, simulation and analysis. Energies 11(2):316

    Article  Google Scholar 

  56. Wurm J, Hoang K, Arias O, Sadeghi AR, Jin Y (2016) Security analysis on consumer and industrial IoT devices. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp 519–524. IEEE, New York

    Google Scholar 

  57. Xu H, Yu W, Griffith D, Golmie N (2018) A survey on industrial internet of things: a cyber-physical systems perspective. IEEE Access 6:78238–78259

    Article  Google Scholar 

  58. Yan C, Xu W, Liu J (2016) Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle. In 24th DEFCON Hacking Conference

    Google Scholar 

  59. Yeganeh SH, Tootoonchian A, Ganjali Y (2013) On scalability of software-defined networking. IEEE Commun Mag 51(2):136–141

    Article  Google Scholar 

  60. Zhang W, Liu Y, Das SK, De P (2008) Secure data aggregation in wireless sensor networks: a watermark based authentication supportive approach. Pervasive Mob Comput 4(5):658–680

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by European Cooperation in Science and Technology (COST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Borhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borhani, M., Liyanage, M., Sodhro, A.H., Kumar, P., Jurcut, A.D., Gurtov, A. (2020). Secure and Resilient Communications in the Industrial Internet. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics