iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-030-44223-1_17
Combinatorial Rank Attacks Against the Rectangular Simple Matrix Encryption Scheme | SpringerLink
Skip to main content

Combinatorial Rank Attacks Against the Rectangular Simple Matrix Encryption Scheme

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12100))

Included in the following conference series:

Abstract

In 2013, Tao et al. introduced the ABC Simple Matrix Scheme for Encryption, a multivariate public key encryption scheme. The scheme boasts great efficiency in encryption and decryption, though it suffers from very large public keys. It was quickly noted that the original proposal, utilizing square matrices, suffered from a very bad decryption failure rate. As a consequence, the designers later published updated parameters, replacing the square matrices with rectangular matrices and altering other parameters to avoid the cryptanalysis of the original scheme presented in 2014 by Moody et al.

In this work we show that making the matrices rectangular, while decreasing the decryption failure rate, actually, and ironically, diminishes security. We show that the combinatorial rank methods employed in the original attack of Moody et al. can be enhanced by the same added degrees of freedom that reduce the decryption failure rate. Moreover, and quite interestingly, if the decryption failure rate is still reasonably high, as exhibited by the proposed parameters, we are able to mount a reaction attack to further enhance the combinatorial rank methods. To our knowledge this is the first instance of a reaction attack creating a significant advantage in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Any mention of commercial products does not indicate endorsement by NIST.

References

  1. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In: Lange, T., Takagi, T. [13], pp. 289–308 (2017)

    Google Scholar 

  2. Cartor, R., Smith-Tone, D.: An updated security analysis of PFLASH. In: Lange, T., Takagi, T. [13], pp. 241–254 (2017)

    Google Scholar 

  3. Cartor, R., Smith-Tone, D.: EFLASH: a new multivariate encryption scheme. In: Cid, C., Jacobson Jr., M. (eds.) Selected Areas in Cryptography - SAC 2018. LNCS, vol. 11349, pp. 281–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7_13

    Chapter  Google Scholar 

  4. Chen, M.-S., Yang, B.-Y., Smith-Tone, D.: Pflash - secure asymmetric signatures on smart cards. In: Lightweight Cryptography Workshop 2015 (2015). http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session3-smith-tone-paper.pdf

  5. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  6. Ding, J.: A new variant of the matsumoto-imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_22

    Chapter  Google Scholar 

  7. Ding, J., Petzoldt, A., Wang, L.: The cubic Simple Matrix encryption scheme. In: Mosca, M. [18], pp. 76–87 (2014)

    Google Scholar 

  8. Dubois, V., Fouque, P.-A., Stern, J.: Cryptanalysis of SFLASH with slightly modified parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 264–275. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_15

    Chapter  Google Scholar 

  9. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_3

    Chapter  Google Scholar 

  10. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_20

    Chapter  Google Scholar 

  11. Ikematsu, Y., Perlner, R., Smith-Tone, D., Takagi, T., Vates, J.: HFERP - a new multivariate encryption scheme. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 396–416. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_19

    Chapter  Google Scholar 

  12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

    Chapter  Google Scholar 

  13. Lange, T., Takagi, T. (eds.): PQCrypto 2017. LNCS, vol. 10346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6

    Book  Google Scholar 

  14. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39

    Chapter  Google Scholar 

  15. Moody, D., Perlner, R., Smith-Tone, D.: An asymptotically optimal structural attack on the ABC multivariate encryption scheme. In: Mosca, M. [18], pp. 180–196 (2014)

    Google Scholar 

  16. Moody, D., Perlner, R., Smith-Tone, D.: Key recovery attack on the cubic ABC Simple Matrix multivariate encryption scheme. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 543–558. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_29

    Chapter  Google Scholar 

  17. Moody, D., Perlner, R., Smith-Tone, D.: Improved attacks for characteristic-2 parameters of the cubic ABC Simple Matrix encryption scheme. In: Lange, T., Takagi, T. [13], pp. 255–271 (2017)

    Google Scholar 

  18. Mosca, M. (ed.): PQCrypto 2014. LNCS, vol. 8772. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4

    Book  MATH  Google Scholar 

  19. Patarin, J.: The oil and vinegar signature scheme. In: Dagstuhl Workshop on Cryptography, September 1997 (1997)

    Google Scholar 

  20. Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_22

    Chapter  Google Scholar 

  21. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_20

    Chapter  Google Scholar 

  22. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4

    Chapter  Google Scholar 

  23. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_21

    Chapter  Google Scholar 

  24. Perlner, R., Petzoldt, A., Smith-Tone, D.: Total break of the SRP encryption scheme. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 355–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_18

    Chapter  Google Scholar 

  25. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733

    Chapter  Google Scholar 

  26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comp. 26, 1484 (1997)

    Article  MathSciNet  Google Scholar 

  27. Smith-Tone, D., Verbel, J.: A key recovery attack for the extension field cancellation encryption scheme. In: concurrent submission to PQCrypto 2020 (2020)

    Google Scholar 

  28. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_12

    Chapter  Google Scholar 

  29. Tao, C., Diene, A., Tang, S., Ding, J.: Simple Matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_16

    Chapter  Google Scholar 

  30. Tao, C., Xiang, H., Petzoldt, A., Ding, J.: Simple Matrix - a multivariate public key cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)

    Article  MathSciNet  Google Scholar 

  31. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.7) (2019). https://www.sagemath.org

  32. Wolf, C., Braeken, A., Preneel, B.: On the security of stepwise triangular systems. Des. Codes Cryptogr. 40(3), 285–302 (2006)

    Article  MathSciNet  Google Scholar 

  33. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157_43

    Chapter  Google Scholar 

  34. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Smith-Tone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apon, D., Moody, D., Perlner, R., Smith-Tone, D., Verbel, J. (2020). Combinatorial Rank Attacks Against the Rectangular Simple Matrix Encryption Scheme. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44223-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44222-4

  • Online ISBN: 978-3-030-44223-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics